Paper | Title | Page |
---|---|---|
WE5PFP057 | Integrated Surface Topography Characterization of Variously Polished Niobium for Superconducting Particle Accelerators | 2132 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. As SRF cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on performance limitations. Micro-and nano-roughness are implicated in direct geometrical field enhancements and complications of the composition of the 50 nm surface layer in which the super-currents flow. Interior surface etching (BCP/EP) to remove mechanical damage leaves surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely-used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is being used to distinguish the scale-dependent smoothing effects. The topographical evolution of the varied starting state Nb surface (CBP/ EBW) as a function of applied etching, polishing steps and conditions is reported, resulting in a novel qualitative and quantitative description of Nb surface topography. |