A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Reilly, R.E.

Paper Title Page
TU6RFP077 Gap Clearing Kicker Magnet for Main Injector 1729
 
  • C.C. Jensen, R.E. Reilly, I. Terechkine
    Fermilab, Batavia
 
 

Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.


A fast kicker magnet has been designed for use in Main Injector at Fermilab. The magnet will be used for controlled removal of unbunched beam created in the slip stacking process. The strength of each of the six magnets is 75 G·m at 500 A. The aperture is 11.4 cm wide x 5.3 cm high x 64 cm long. The field rise time from 3% to 97% of less than 57 ns has been achieved along with a flattop variation of less than ±3% variation. Results of simulation and measurements will be presented. The pulser is described in a companion paper.

 
WE1GRC05 Crystal Collimation Studies at the Tevatron (T-980) 1836
 
  • N.V. Mokhov, G. Annala, A. Apyan, R.A. Carrigan, A.I. Drozhdin, T.R. Johnson, A.M. Legan, R.E. Reilly, V.D. Shiltsev, D.A. Still, R. Tesarek, J.R. Zagel
    Fermilab, Batavia
  • R.W. Assmann, V.P. Previtali, S. Redaelli, W. Scandale
    CERN, Geneva
  • Y.A. Chesnokov, I.A. Yazynin
    IHEP Protvino, Protvino, Moscow Region
  • V. Guidi
    INFN-Ferrara, Ferrara
  • Yu.M. Ivanov
    PNPI, Gatchina, Leningrad District
  • S. Peggs
    BNL, Upton, Long Island, New York
  • M. Prest
    Università dell'Insubria & INFN Milano Bicocca, Como
  • S. Shiraishi
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois
 
 

Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.


Bent-crystal channeling is a technique with a potential to increase the beam-halo collimation efficiency at high-energy colliders. First measurements at the Tevatron in 2005 have shown that using a 5-mm silicon crystal to deflect the proton beam halo onto a secondary collimator improves the system performance by reducing the machine impedance, beam losses in the collider detectors and irradiation of the superconducting magnets, all in agreement with simulations. Recent results, obtained with substantially improved goniometer and enhanced beam diagnostics, are reported showing channeling collimation of the ~1-TeV circulating proton beam halo at the Tevatron collider. Comprehensive results of computer modeling are presented which allow further developments of the T-980 experiment towards a robust system compatible with requirements to high-efficient collimation at the Tevatron and LHC hadron colliders.

 

slides icon

Slides