A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Reed, C.B.

Paper Title Page
TU6RFP048 Upgrade of the FRIB Prototype Injector for Liquid Lithium Film Testing 1656
 
  • S.A. Kondrashev, A. Barcikowski, Y. Momozaki, B. Mustapha, J.A. Nolen, P.N. Ostroumov, C.B. Reed, R.H. Scott
    ANL, Argonne
 
 

Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.


The development of a uniform and stable high velocity, thin liquid lithium film stripper is essential for the Facility for Rare-Isotope Beams (FRIB) Project. The formation of such a film has been demonstrated recently at ANL. Film thickness should be measured, and its temporal and spatial stability under high power ion beam irradiation should be verified. Intense beams of light ions generated by the FRIB prototype injector can be used for this task. The injector consists of an ECR ion source followed by a LEBT. A DC 3.3 mA/75 kV proton beam has been generated at the LEBT output. Proton beam power will be brought to required level by adding the second acceleration tube. A low energy electron beams (LEEB) technique, based on the thickness-dependent scattering of the electrons by the film, has been proposed as a fast-response on-line film thickness monitoring. A LEEB test bench has been built to verify this technique. The transmission of electrons through the carbon foils of different thicknesses was measured and compared with results of CASINO simulations. Agreement between the experimental and numerical results allows quantitative measurements of film thickness using the LEEB.