A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Raubenheimer, T.O.

Paper Title Page
WE6PFP079 Conceptual Design of the Drive Beam for a PWFA-LC 2682
 
  • S. Pei, M.J. Hogan, T.O. Raubenheimer, A. Seryi
    SLAC, Menlo Park, California
  • H.-H. Braun, R. Corsini, J.-P. Delahaye
    CERN, Geneva
 
 

Funding: Work supported by the DOE under contract DE-AC02-76SF00515.


Plasma Wake-Field Acceleration (PWFA) has demonstrated acceleration gradients above 50 GeV/m. Simulations have shown drive/witness bunch configurations that yield small energy spreads in the accelerated witness bunch and high energy transfer efficiency from the drive bunch to the witness bunch, ranging from 30% for a Gaussian drive bunch to 95% for bunch with triangular shaped longitudinal profile. These results open the opportunity for a linear collider that could be compact, efficient and more cost effective than the present microwave technologies. A concept of a PWFA-based Linear Collider (PWFA-LC) has been developed by the PWFA collaboration. Here we will describe the conceptual design and optimization of the drive beam, which includes the drive beam linac and distribution system. We apply experience of the CLIC drive beam design and demonstration in the CLIC Test Facility (CTF3) to this study. We discuss parameter optimization of the drive beam linac structure and evaluate the drive linac efficiency in terms of the drive beam distribution scheme and the klystron / modulator requirements.

 
WE6PFP081 A Concept of Plasma Wake Field Acceleration Linear Collider (PWFA-LC) 2688
 
  • A. Seryi, M.J. Hogan, S. Pei, T.O. Raubenheimer, P. Tenenbaum
    SLAC, Menlo Park, California
  • C. Huang, C. Joshi, W.B. Mori
    UCLA, Los Angeles, California
  • T.C. Katsouleas
    Duke University, Durham, North Carolina
  • P. Muggli
    USC, Los Angeles, California
 
 

Funding: Work supported by the DOE under contract DE-AC02-76SF00515.


Plasma Wake-Field Acceleration (PWFA) has demonstrated acceleration gradients above 50 GeV/m. Simulations have shown drive/witness bunch configurations that yield small energy spreads in the accelerated witness bunch and high energy transfer efficiency from the drive bunch to the witness bunch, ranging from 30% for a Gaussian drive bunch to 95% for shaped longitudinal profile. These results open the opportunity for a linear collider that could be compact, efficient and more cost effective that the present microwave technologies. A concept of a PWFA-based Linear Collider (PWFA-LC) has been developed and is described in this paper. The scheme of the drive beam generation and distribution, requirements on the plasma cells, and optimization of the interaction region parameters are described in detail. The research and development steps, necessary for further development of the concept, are also outlined.

 
TU1GRI01 Road to a Plasma Wakefield Accelerator Based Linear Collider 646
 
  • M.J. Hogan, I. Blumenfeld, N.A. Kirby, S. Pei, T.O. Raubenheimer, A. Seryi, P. Tenenbaum
    SLAC, Menlo Park, California
  • C. Huang, C. Joshi, W. Lu, W.B. Mori
    UCLA, Los Angeles, California
  • T.C. Katsouleas
    Duke University, Durham, North Carolina
  • P. Muggli
    USC, Los Angeles, California
 
 

Funding: Work supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515.


Recent progress in generating gradients in the 10's of GV/m range with beam driven plasmas has renewed interest in developing a linear collider based on this technology. This talk will explore possible configurations of such a machine, discuss the key demonstrations and the facilities needed to advance this effort and highlight possible alternative uses of this technology.

 

slides icon

Slides

 
WE6RFP089 Applications of a Plasma Wake Field Accelerator 3007
 
  • M.J. Hogan, I. Blumenfeld, N.A. Kirby, S. Pei, T.O. Raubenheimer, A. Seryi, P. Tenenbaum
    SLAC, Menlo Park, California
  • C. Huang, C. Joshi, W. Lu, W.B. Mori
    UCLA, Los Angeles, California
  • T.C. Katsouleas
    Duke University, Durham, North Carolina
  • P. Muggli
    USC, Los Angeles, California
 
 

Funding: Work supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515.


An electron beam driven Plasma Wake-Field Accelerator (PWFA) has recently sustained accelerating gradients above 50GeV/m for almost a meter. Future experiments will transition from using a single bunch to both drive and sample the wakefield, to a two bunch configuration that will accelerate a discrete bunch of particles with a narrow energy spread and preserved emittance. The plasma works as an energy transformer to transform high-current, low-energy bunches into relatively lower-current higher-energy bunches. This method is expected to provide high energy transfer efficiency (from 30% up to 95%) from the drive bunch to the accelerated witness bunch. The PWFA has a wide variety of applications and also has the potential to greatly lower the cost of future accelerators. We discuss various possible uses of this technique such as: linac based light sources, injector systems for ring based synchrotron light sources, and for generation of electron beams for high energy electron-hadron colliders.

 
WE6RFP097 Simulations of 25 GeV PWFA Sections: Path Towards a PWFA Linear Collider 3025
 
  • C. Huang, W. An, C.E. Clayton, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, M. Tzoufras
    UCLA, Los Angeles, California
  • I. Blumenfeld, M.J. Hogan, N.A. Kirby, T.O. Raubenheimer, A. Seryi
    SLAC, Menlo Park, California
  • T.C. Katsouleas
    Duke University, Durham, North Carolina
  • P. Muggli
    USC, Los Angeles, California
 
 

Funding: Work supported by DOE under contracts DE-FG03-92ER40727, DE-FG52-06NA26195, DE-FC02-07ER41500, DE-FG02-03ER54721.


Recent Plasma Wake-Field Acceleration (PWFA) experiments at Stanford Linear Accelerator Center has demonstrated electron acceleration from 42GeV to 84GeV in less than one meter long plasma section. The accelerating gradient is above 50GeV/m, which is three orders of magnitude higher than those in current state-of-art RF linac. Further experiments are also planned with the goal of achieving acceleration of a witness bunch with high efficiency and good quality. Such PWFA sections with 25 GeV energy gain will be the building blocks for a staged TeV electron-positron linear collider concept based on PWFA (PWFA-LC). We conduct Particle-In-Cell simulations of these PWFA sections at both the initial and final witness beam energies. Different design options, such as Gaussian and shaped bunch profiles, self-ionized and pre-ionized plasmas, optimal bunch separation and plasma density are explored. Theoretical analysis of the beam-loading* in the blow-out regime of PWFA and simulation results show that highly efficient PWFA stages are possible. The simulation needs, code developments and preliminary simulation results for future collider parameters will be discussed.


*M. Tzoufras et al, Phys. Rev. Lett. {10}1, 145002 (2008).

 
WE6RFP098 High Transformer Ratio PWFA for Application on XFELs 3028
 
  • W. Lu, W. An, C. Huang, C. Joshi, W.B. Mori
    UCLA, Los Angeles, California
  • M.J. Hogan, T.O. Raubenheimer, A. Seryi
    SLAC, Menlo Park, California
 
 

Funding: Work supported by DOE grant numbers: DE-FG03-92ER40727, DE-FG52-06NA26195, DE-FC02-07ER41500, DE-FG02-03ER54721


The fourth generation of light sources (such as LCLS and the XFEL) require high energy electron drivers (16-20GeV) of very high quality. We are exploring the possibility of using a high transformer ratio PWFA to meet these challenging requirements. This may have the potential to reduce the size of the electron drivers by a factor of 5 or more, therefore making these light source much smaller and more affordable. In our design, a high charge (5-10nC) low energy driver (1-3GeV) with an elongated current profile is used to drive a plasma wake in the blowout regime with a high transformer ratio (5 or more). A second ultra-short beam that has high quality and low charge beam (1nC) can be loaded into the wake at a proper phase and be accelerated to high energy (5-15GeV) in very short distances (10s of cms). The parameters can be optimized, such that high quality (0.1% energy spread and 1mm mrad normalized emittance) and high efficiency (60-80%) can be simultaneously achieved. The major obstacle for achieving the above goals is the electron hosing instabilities in the blowout regime. In this poster, we will use both theoretical analysis and PIC simulations to study this concept.

 
FR1RAI03 ATF2 Commissioning 4205
 
  • A. Seryi, J.W. Amann, P. Bellomo, B. Lam, D.J. McCormick, J. Nelson, J.M. Paterson, M.T.F. Pivi, T.O. Raubenheimer, C.M. Spencer, M.-H. Wang, G.R. White, W. Wittmer, M. Woodley, Y.T. Yan, F. Zhou
    SLAC, Menlo Park, California
  • D. Angal-Kalinin, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Apsimon, B. Constance, C. Perry, J. Resta-López, C. Swinson
    JAI, Oxford
  • S. Araki, A.S. Aryshev, H. Hayano, Y. Honda, K. Kubo, T. Kume, S. Kuroda, M. Masuzawa, T. Naito, T. Okugi, R. Sugahara, T. Tauchi, N. Terunuma, J. Urakawa, K. Yokoya
    KEK, Ibaraki
  • S. Bai, J. Gao
    IHEP Beijing, Beijing
  • P. Bambade, Y. Renier, C. Rimbault
    LAL, Orsay
  • G.A. Blair, S.T. Boogert, V. Karataev, S. Molloy
    Royal Holloway, University of London, Surrey
  • B. Bolzon, N. Geffroy, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P. Burrows
    OXFORDphysics, Oxford, Oxon
  • G.B. Christian
    ATOMKI, Debrecen
  • J.-P. Delahaye, D. Schulte, R. Tomás, F. Zimmermann
    CERN, Geneva
  • E. Elsen
    DESY, Hamburg
  • E. Gianfelice-Wendt, M.C. Ross, M. Wendt
    Fermilab, Batavia
  • A. Heo, E.-S. Kim, H.-S. Kim
    Kyungpook National University, Daegu
  • J.Y. Huang, W.H. Hwang, S.H. Kim, Y.J. Park
    PAL, Pohang, Kyungbuk
  • Y. Iwashita, T. Sugimoto
    Kyoto ICR, Uji, Kyoto
  • Y. Kamiya
    ICEPP, Tokyo
  • S. Komamiya, M. Oroku, T.S. Suehara, T. Yamanaka
    University of Tokyo, Tokyo
  • A. Lyapin
    UCL, London
  • B. Parker
    BNL, Upton, Long Island, New York
  • T. Sanuki
    Tohoku University, Graduate School of Science, Sendai
  • A. Scarfe
    UMAN, Manchester
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
 
 

ATF2 is a final-focus test beam line that attempts to focus the low-emittance beam from the ATF damping ring to a beam size of about 37 nm, and at the same time to demonstrate nm beam stability, using numerous advanced beam diagnostics and feedback tools. The construction is well advanced and beam commissioning of ATF2 has started in the second half of 2008. ATF2 is constructed and commissioned by ATF international collaborations with strong US, Asian and European participation.

 

slides icon

Slides