Paper | Title | Page |
---|---|---|
TU6PFP088 | Chopper for Intense Proton Beams at Repetition Rates up to 250 kHz | 1500 |
|
||
A chopper system for high intensity proton beams of up to 200 mA and repetition rates up to 250 kHz is under development at IAP to be tested and applied at the Frankfurt Neutron Source FRANZ. The chopper system consists of a fast kicker for transversal separation of the beams and a static septum magnet to lower the dynamic deflection angle. Multi-particle simulations and preliminary experiments are presented. The simulations were made using a Particle in Cell (PIC)-Code developed at IAP. It permits the study of collective effects of compensation and secondary electrons on the proton beam in time-dependent kicker fields. A magnetic kicker with high repetition rate would entail high power consumption while electrostatic deflection in combination with intense beams can lead to voltage breakdown. Therefore a Wien filter-type ExB configuration consisting of a static magnetic dipole field and a pulsed electric field to compensate the magnetic deflection is discussed. The 25 kV high voltage pulser (250 kHz, 100 ns) will apply fast MOSFET transistor technology in the primary circuit, while the high voltage is provided at the secondary circuit around a metglas transformer core. |
||
MO6RFP025 | Construction of the BNL EBIS Preinjector | 407 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A new heavy ion preinjector, consisting of an Electron Beam Ion Source (EBIS), an RFQ, and IH Linac, is under construction at Brookhaven National Laboratory. This preinjector will provide ions of any species at an energy of 2 MeV/u, resulting in increased capabilities for the Relativistic Heavy Ion Collider, and the NASA Space Radiation Laboratory programs. Initial operation of the EBIS and RFQ will be reported on, along with the status of the construction and installation of the remainder of the preinjector. |
||
WE4PBC05 | The HITRAP Decelerator Linac at GSI | 1961 |
|
||
Funding: European Commission; contract number HPRI-CT-2001-50036 (HITRAP) German Ministry for Education and Research (BMBF; contract number 06 FY160I Deceleration of heavy, highly charged ions from the ion storage ring ESR of the GSI accelerator facility with an rf-linear decelerator will provide ions up to bare uranium almost at rest for cutting edge experiments in atomic and nuclear physics. For this unique approach the beam has to be prepared well by electron cooling in the ESR to account for a 26 time increase of the transverse emittance during the following deceleration. An interdigital H-type (IH) structure and a radio-frequency quadrupole (RFQ) structure are operated in inverse to decelerate first from 4 MeV/u to 0.5 MeV/u and then to 6 keV/u. The quasi-continuous beam from the ESR is adapted, by using a double drift buncher, to match the longitudinal acceptance of the IH. Downstream from the IH-structure the 0.5 MeV/u beam is then fit with a spiral re-buncher to the RFQ, which finally decelerates the ions to 6 keV/u. First commissioning beam times have shown that the bunching works well and ions have been decelerated to 0.5 MeV/u in the IH structure. Extensive measurements of transversal emittance before and after deceleration can now be compared to beam dynamics calculations. |
||
|
||
TH5PFP025 | An Efficient 125mA, 40MeV Deuteron DTL for Fusion Material Tests | 3248 |
|
||
Funding: * Work supported by BMBF contr. No. 06F134I & EU contr. No. EFDA/99-507ERB5005CT990061 The International Fusion Materials Irradiation Facility (IFMIF) is looking for an efficient drift-tube linac (DTL) which can accelerate a 125mA, CW deuteron beam from 5MeV to 40MeV with a high beam quality and nearly no beam loss. Taking advantages of the KONUS dynamics concept and the H-type structure, a compact DTL design has been realized by IAP, Frankfurt University, with satisfying performances. Including simulated errors, the feasibility of the IAP scheme has been carefully checked as well. |
||
FR5REP060 | Prototype Construction of a Coupled CH-DTL Proton Linac for FAIR | 4908 |
|
||
For the research program with cooled antiprotons at FAIR a dedicated 70MeV, 70mA proton injector is needed. The main acceleration of this room temperature injector will be provided by six coupled CH-cavities operated at 325MHz. Each cavity will be powered by a 3 MW klystron (6 in total). For the second acceleration unit from 11.7 to 24.3 MeV measurements on a 1:2 scaled model are performed. This tank is now ready for construction and will be used for RF power tests at GSI. The RF power test installations are underway. This paper presents the CH-DTL design and especially the status of the first power cavity. |
||
FR5REP061 | Recent Superconducting CH-Cavity Development | 4911 |
|
||
The superconducting CH-cavity is the first multi-cell drift tube cavity for the low and medium energy range of proton and ion linacs. A 19 cell, beta=0.1 cavity has been developed and tested successfully with gradients of up to 7 MV/m. A piezo based fast tuner system has been developped. First horizontal tests of the cavity in a cryo-module with tuner are presented. Additionally, the construction of a new superconducting 325 MHz 7-gap CH-cavity has started. This cavity has an optimized geometry with respect to tuning possibilities, high power RF coupling and minimized end cell lengths. After low power tests it is planned to test this cavity with a 11.4 MeV/u beam delivered by the Unilac at GSI. |