A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Quatraro, D.

Paper Title Page
MO3RAC04 Super-B Project Overview 38
 
  • M.E. Biagini, R. Boni, M. Boscolo, T. Demma, A. Drago, S. Guiducci, P. Raimondi, S. Tomassini, M. Zobov
    INFN/LNF, Frascati (Roma)
  • K.J. Bertsche, M.H. Donald, Y. Nosochkov, A. Novokhatski, J. Seeman, M.K. Sullivan, U. Wienands, W. Wittmer, G. Yocky
    SLAC, Menlo Park, California
  • S. Bettoni, D. Quatraro
    CERN, Geneva
  • I. Koop, E.B. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov
    BINP SB RAS, Novosibirsk
  • K. Ohmi
    KEK, Ibaraki
  • E. Paoloni
    University of Pisa and INFN, Pisa
 
 

The SuperB project aims at the construction of an asymmetric (4x7 GeV), very high luminosity, B-Factory on the Roma II (Italy) University campus. The luminosity goal of 1036 cm-2 s-1 can be reached with a new collision scheme with large Piwinski angle and the use of “crab” sextupoles. A crab-waist IR has been successfully tested at the DAPHNE Phi-Factory at LNF-Frascati (Italy) in 2008. The crab waist together with very low beta* will allow for operation with relatively low beam currents and reasonable bunch length, comparable to those of PEP-II and KEKB. In the High Energy Ring, two spin rotators permit bringing longitudinally polarized beams into collision at the IP. The lattice has been designed with a very low intrinsic emittance and is quite compact, less than 2 km long. The tight focusing requires a sophisticated Interaction Region with quadrupoles very close to the IP. A Conceptual Design Report was published in March 2007, and beam dynamics and collective effects R&D studies are in progress in order to publish a Technical Design Report by the end of 2010. A status of the design and simulations is presented in this paper.

 

slides icon

Slides

 
TU6PFP087 High Intensity Beams from the CERN PS Booster 1497
 
  • B. Mikulec, M. Chanel, A. Findlay, K. Hanke, D. Quatraro, G. Rumolo, J. Tan, R. Tomás
    CERN, Geneva
 
 

The CERN Proton Synchrotron Booster (PSB) has been running for more than 30 years. Originally designed to accelerate particles from 50 to 800 MeV, later upgraded to an energy of 1 GeV and finally 1.4 GeV, it is steadily being pushed to its operational limits. One challenge is the permanent demand for intensity increase, in particular for CNGS and ISOLDE, but also in view of LINAC4. As it is an accelerator working with very high space charge during the low energy part of its cycle, its operational conditions have to be precisely tuned. Amongst other things resonances must be avoided, stop band crossings optimized and the machine impedance minimized. Recently, an operational intensity record was achieved with >4.25·1013 protons accelerated. An orbit correction campaign performed during the 2007/2008 shutdown was a major contributing factor to achieving this intensity. As the PSB presently has very few orbit correctors available, the orbit correction has to be achieved by displacing and/or tilting some of the defocusing quadrupoles common to all 4 PSB rings. The contributing factors used to optimize performance will be reviewed.

 
TH5PFP012 Non Relativistic Broad Band Wake Fields and Potential-Well Distortion 3211
 
  • D. Quatraro, A. Findlay, B. Mikulec, G. Rumolo
    CERN, Geneva
 
 

The usual approach and treatment for the interaction of a particle beam with wake fields start from the assumption of ultrarelativistic beams. This is not the case, for example, for the Proton Synchrotron Booster (PSB) whose particles have a kinetic energy up to 1.4 GeV, with a relativistic gamma close to 2.5. There are some examples in literature which derive non ultrarelativistic formulas for the resistive wall impedance. In this paper we have extended the Broad-Band resonator model, allowing the impedance to have poles even in the half upper complex plane, in order to obtain a wake function different from zero for z greater than zero. The Haissinski equation has been numerically solved showing longitudinal bunch shape changes with the energy. In addition some longitudinal bunch profile measurements, taken for different energies and bunch intensities at the PSB, are shown.

 
TH5PFP013 Coherent Tune Shift and Instabilities Measurements at the CERN Proton Synchrotron Booster 3214
 
  • D. Quatraro, A. Blas, M. Chanel, A. Findlay, B. Mikulec, G. Rumolo
    CERN, Geneva
 
 

To understand one contribution to the intensity limitations of the CERN Proton Synchrotron Booster (PSB) in view of its operation with beams from Linac 4, the impedance of the machine has been characterized. Measurements of tune shift as a function of the intensity have been carried out in order to estimate the low frequency imaginary part of the impedance. Since the PSB is a low energy machine, these measurements have been done at two different energies,so as to enable us to disentangle the effect of the indirect space charge and resistive wall from the contribution of the machine impedance. An estimation of the possible resonant peaks in the impedance spectrum has been made by measuring a fast instability in Ring 4.

 
TH5PFP014 Non Relativistic Resistive Wall Wake Fields and Single Bunch Stability 3217
 
  • D. Quatraro, G. Rumolo
    CERN, Geneva
 
 

The usual approach for the resistive pipe wall assumes the beam moves with the speed of light. For many low energy rings, such as the Proton Synchrotron Booster (PBS), possible performance limitations may arise from non relativistic resistive wall wake fields. In this regime not only the head of the bunch can interact with the tail but also the vice versa holds. In this paper we analyze numerical results showing the resistive wake field calculated from non relativistic impedance models. In addition we analyze the well known two particles model assuming that even the trailing particle can affect the leading one. We observe significant changes in the stability domain.

 
TH5PFP015 Recent Developments for the HEADTAIL Code: Updating and Benchmarks 3220
 
  • D. Quatraro, G. Rumolo, B. Salvant
    CERN, Geneva
 
 

The HEADTAIL code models the evolution of a single bunch interacting with a localized impedance source or an electron cloud, optionally including space charge. The newest version of HEADTAIL relies on a more detailed optical model of the machine taken from MAD-X and is more flexible in handling and distributing the interaction and observation points along the simulated machine. In addition, the option of the interaction with the wake field of specific accelerator components has been added, such that the user can choose to load dipolar and quadrupolar components of the wake from the impedance database Z-BASE. The case of a single LHC-type bunch interacting with the realistic distribution of the kicker wake fields inside the SPS has been successfully compared with a single integrated beta-weighted kick per turn. The current version of the code also contains a new module for the longitudinal dynamics to calculate the evolution of a bunch inside an accelerating bucket.

 
FR5RFP034 Transverse Impedance Localization Using Dependent Optics 4604
 
  • R. Calaga
    BNL, Upton, Long Island, New York
  • G. Arduini, E. Métral, G. Papotti, D. Quatraro, G. Rumolo, B. Salvant, R. Tomás
    CERN, Geneva
 
 

Funding: This work has been partially performed under the auspices of US department of energy


Measurements of transverse impedance in the SPS to track the evolution over the last few years show discrepancies compared to the analytical estimates of the major contributors. Recent measurements to localize the major sources of the transverse impedance using intensity dependent optics are presented. Some simulations using HEADTAIL to understand the limitations of the reconstruction and related numerical aspects are also discussed.