A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Qin, B.

Paper Title Page
MO6PFP021 Magnetic Field Measurement System for CYCHU-10 181
 
  • J. Yang, L. Cao, T. Hu, D. Li, K.F. Liu, B. Qin, J. Xiong, Y.Q. Xiong, T. Yu
    HUST, Wuhan
 
 

Funding: National Natural Science Foundation of China (No. 10435030)


A 10MeV H- compact cyclotron (CYCHU-10) is under construction in Huazhong University of Science and Technology (HUST). This paper presents a magnetic field measurement system for measuring the cyclotron magnet. A Hall probe and a granite x-y stage are adopted in the project. The Cartesian mapping will replace traditional polar system. The motion control and data acquisition system for the magnetic field measurement consists of a Teslameter and Hall probe, servomotors, a motion control card, optical linear encoder systems and an industrial PC. The magnetic field will be automatically scanned by this apparatus, and a flying mode will be the main running mode to reduce measure time.

 
MO6PFP022 Main Magnet and Central Region Design for a 10 MeV PET Cyclotron CYCHU-10 184
 
  • B. Qin, M. Fan, D. Li, K.F. Liu, Y.Q. Xiong, J. Yang, T. Yu, L. Zhao
    HUST, Wuhan
 
 

Funding: Work supported by National Nature Science Foundation of China (10435030) and National Science Foundation for Post-doctoral Scientists of China (20080430973)


Low energy compact cyclotrons for short-life isotopes production delivered to the Positron Emission Tomography (PET) facilities have foreseeable prospects with growing demands in medical applications. The Huazhong University of Science and Technology (HUST) proposed to develop a 10MeV PET cyclotron CYCHU-10. The design study of the main magnet and the central region was introduced. A matrix shaping method with the radial fringe field effect and artificial control was adopted to obtain field isochronisms precisely. The central region was optimized to attain 35° RF phase acceptance and low vertical beam loss rate.

 
TU5PFP030 Design and Test of 10 kW RF Amplifier Based on Direct Digital Synthesizer 885
 
  • D. Li, L. Cao, T. Hu, J. Huang, B. Qin, J. Yang
    HUST, Wuhan
 
 

Funding: Work supported by National Nature Science Foundation of China, 10435030


In order to reduce the cost of the signal generator comprising a high performance direct digital synthesizer (DDS), the method of picking up a desired aliased signal of DDS output is adopted in the study. The chip AD9850 is used to synthesize RF signal in the system, and the amplitude modulation of the system is achieved by altering the external connection resistance of the chip. The output frequency is tunable from 99.5 to 101MHz. The principle and the test results of the signal synthesizer will be presented. The amplifier based on tetrode technology can deliver the 10kW RF power in a continuous wave (CW) mode of operation. The driver amplifier consists of two solid-state modules, and it can provide the tetrode with up to 300W input power. The tetrode operates in the grounded cathode configuration. The conceptual design of the final stage amplifier will also be demonstrated in this paper.

 
TU5RFP073 Simulation and Optimization Research of a THz Free-Electron Laser Oscillator 1254
 
  • P. Tan, M. Fan, B. Qin, Y.Q. Xiong
    HUST, Wuhan
 
 

A primary design of a compact THz FEL oscillator is presented, which is consisted of an independently tunable cell thermionic rf gun (ITC-RF Gun), a rf linac, a planar undulator and an near concentric optical cavity composed of symmetrical spherical mirrors with an on-axis outcouple hole. Without α-magnet and other bunch compressor, the size of this machine is decreased sharply. The effect of the electron beam parameters on THz radiation is discussed. It is found that the influence of energy spread is pronounced and the influence of emittance is neglectable. Large current is required to got saturation in several us. Then the optimized beam parameters and basic design parameters are summarized.

 
TU6RFP056 Design and Simulation of Microstrip Directional Coupler with Tight Structure and High Directivity 1677
 
  • T. Hu, L. Cao, J. Huang, D. Li, B. Qin, J. Yang, T. Yu
    HUST, Wuhan
 
 

Funding: Nation Nature Science Foundation of China,10435030


The design study of Cyclotron CYCHU 10MeV has been developed at Huazhong University of Science and Technology (HUST). Because of the low center frequency (100MHz) of it’s RF system, we should choose suitable directional couplers for the RF system which is supposed to be high-directivity and tight-structure. This paper analyses and synthesizes kinds of directional couplers, espacially microstrip structure, for it’s tinier volume at the low center frequency compared with stripline and branch structures. The achievement of the high-directivity with microstrip configuration is carried out by the distributed capacitor to decrease the even and odd mode phase difference. Capacitive compensation is performed by the interdigital capacitors. The proposed structure is easy to fabricate and incorporate another microwave device due to planner microstrip.

 
WE5RFP073 Magnetic Design of a Hybrid Undulator for Compact Terahertz FEL 2432
 
  • J. Xiong, K.F. Liu, B. Qin, P. Tan, Y.Q. Xiong, J. Yang
    HUST, Wuhan
 
 

The design of compact terahertz (THz) radiation source based on free electron laser (FEL) has been implemented, whose concept machine is consisting of a thermionic RF gun (ITC-RF Gun), a LINAC, a hybrid undulator combined with an optical resonance cavity of hole-coupling mode. The aim of the project is to provide a stable coherent THz (1~3THz) source. The hybrid undulator system is the critical component for compact terahertz FEL. Emission wavelength is related to the period and the peak magnetic field of the hybrid undulator. In particular, the magnetic structure by adding side magnet blocks to each pole will increase the field strength, avoid too small gap, and make the system more compact. Simulations using RADIA are presented. The feature of designs, optimization of the magnetic parameters and field analysis will be discussed.