A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Qiang, J.

Paper Title Page
MO4RAC02 Status of LHC Crab Cavity Simulations and Beam Studies 85
 
  • R. Calaga, R. De Maria
    BNL, Upton, Long Island, New York
  • R.W. Assmann, J. Barranco, F. Caspers, E. Ciapala, T.P.R. Linnecar, E. Métral, Y. Sun, R. Tomás, J. Tuckmantel, Th. Weiler, F. Zimmermann
    CERN, Geneva
  • G. Burt
    Lancaster University, Lancaster
  • Y. Funakoshi, A. Morita, Y. Morita, K. Nakanishi, Y. Ohnishi
    KEK, Ibaraki
  • Z. Li, A. Seryi, L. Xiao
    SLAC, Menlo Park, California
  • P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • J. Qiang
    LBNL, Berkeley, California
  • N. Solyak, V.P. Yakovlev
    Fermilab, Batavia
 
 

Funding: This work was partially performed under the auspices of the US DOE and the European Community-Research Infrastructure, FP6 programme (CARE, contract number RII3-CT-2003-506395)}


The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. Some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects, beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here.

 

slides icon

Slides

 
MO6RFP077 Status of the LBNL Normal-Conducting CW VHF Photo-Injector 551
 
  • F. Sannibale, K.M. Baptiste, J.N. Corlett, T.M. Huang, S. Kwiatkowski, D. Li, J. Qiang, J.W. Staples, R.P. Wells, L. Yang, A. Zholents
    LBNL, Berkeley, California
  • J.W. McKenzie
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

Funding: This work was supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231


A high-brightness high-repetition rate photo-injector based on a normal conducting 187 MHz RF cavity design capable of CW operation is under construction at the Lawrence Berkeley National Laboratory. A cathode field of ~20 MV/m accelerates electron bunches to 750 keV with peak current, energy spread and transverse emittance suitable for FEL and ERL applications. A vacuum load-lock mechanism is included and a 10 picoTorr range vacuum capability allows most types of photocathodes to operate at a MHz repetition rate with present laser technology. The status of the project is presented.

 
WE6PFP037 3D Strong-Strong Simulations of Wire Compensation of Long-Range Beam-Beam Effects at LHC 2576
 
  • J. Qiang
    LBNL, Berkeley, California
 
 

Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.


In this paper, we report on studying wire compensation of long-range beam-beam effects using a fully 3D strong-strong beam-beam model. The simulations include two head-on collisions with 0.3 mrad crossing angle and 64 long-range beam-beam collisions near IP 1 and IP5. We found that using conducting wires with appropriate current level will compensate the tail emittance growth due to long-range beam-beam effects. The random fluctuation of current level should be controlled below 0.1% level for a good compensation. Lowering the long-range beam-beam separations by 20% together with wire compensation will improve the luminosity by a few percentage. Further reducing the beam-beam separations causes significant beam blow-up and decrease of luminosity.

 
WE6PFP038 Strong-Strong Beam-Beam Simulation of Crab Cavity Compensation at LHC 2579
 
  • J. Qiang
    LBNL, Berkeley, California
 
 

Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.


Crab cavity is proposed to compensate the geometric luminosity loss of crossing angle collision at LHC upgrade. In this paper, we report on strong-strong beam-beam simulation of crab cavity compensation at LHC using the BeamBeam3D code. Simulation results showed that using a pair of local compensation for each beam could significantly improve the beam luminosity at collision. However, this improvement could be lost with random offset errors from the RF deflection cavities.

 
WE6PFP039 Emittance Growth due to Beam-Beam Effects with a Static Offset in Collision in the LHC 2582
 
  • T. Pieloni
    PSI, Villigen
  • W. Herr
    CERN, Geneva
  • J. Qiang
    LBNL, Berkeley, California
 
 

Under nominal operational conditions, the LHC bunches experience small unavoidable offset at the collision points caused by long range beam-beam interactions. Although the geometrical loss of luminosity is small, one may have to consider an increase of the beam transverse emittance, leading to a deterioration of the experimental conditions. In this work we evaluate and understand the dynamics of beam-beam interactions with static offsets at the collision point. A study of the emittance growth as a function of the offset amplitude in collisions is presented. Moreover, we address the effects coming from the beam parameters such as the initial transverse beam size, bunch intensity and tune.

 
WE6PFP067 Simulation Studies of Beam-Beam Effects of a Ring-Ring Electron-Ion Collider Based on CEBAF 2653
 
  • Y. Zhang
    JLAB, Newport News, Virginia
  • J. Qiang
    LBNL, Berkeley, California
 
 

Funding: (1) Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 (2) Supported by the U. S. Department of Energy under Contract no. DE-AC02-05CH11231.


The collective beam-beam effect can potentially cause a rapid growth of beam sizes and reduce the luminosity of a collider to an unacceptably low level. The ELIC, a proposed ultra high luminosity electron-ion collider based on CEBAF, employs high repetition rate crab crossing colliding beams with very small bunch transverse sizes and very short bunch lengths, and collides them at up to 4 interaction points with strong final focusing. All of these features can make the beam-beam effect challenging. In this paper, we present simulation studies of the beam-beam effect in ELIC using a self-consistent strong-strong beam-beam simulation code developed at Lawrence Berkeley National Laboratory. This simulation study is used for validating the ELIC design and for searching for an optimal parameter set.

 
TH6PFP085 Beam Dynamics Studies for the FRIB Driver Linac 3901
 
  • Q. Zhao, M. Doleans, F. Marti, T.P. Wangler, X. Wu, R.C. York
    NSCL, East Lansing, Michigan
  • J. Qiang
    LBNL, Berkeley, California
 
 

Funding: U.S. Department of Energy


A driver linac has been designed for the proposed Facility for Rare Isotope Beam (FRIB) at Michigan State University. FRIB is a lower cost and reduced scope alternative to the Rare Isotope Accelerator (RIA) project. The superconducting driver linac will accelerate stable isotope beams to energies ≥200 MeV/u with a beam power up to 400 kW for the production of rare isotope beams. The driver linac consists of a front-end and two segments of superconducting linac connected by a charge stripping station. End-to-end beam simulation studies with high statistics have been performed using the RIAPMTQ and IMPACT codes on high performance parallel computers. These studies include misalignment of beam elements, rf amplitude and phase errors for cavities, and thickness variation of the stripping foil. Three-dimensional fields of the superconducting solenoids and cavities were used in the lattice evaluation. The simulation results demonstrate good driver linac performance. No uncontrolled beam losses were observed even for the challenging case of multiple charge state uranium beam acceleration. The beam dynamics issues will be discussed and the detail beam simulation results presented.