Paper | Title | Page |
---|---|---|
MO6RFP050 | Ion Bombardment in RF Photoguns | 473 |
|
||
A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the RF field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment. |
||
TU3PBC06 | Recent Development at the NSCL Small Isochronous Ring | 733 |
|
||
Funding: this work is supported by National Science Foundation Grant PHY-0606007. The Small Isochronous Ring (SIR) at the NSCL/MSU was built to study space charge effects in the isochronous regime. Results of experimental studies of the longitudinal beam dynamics in the ring showed a remarkable agreement with results of numerical simulations. Recently, we have designed and built an energy analyzer to accurately measure the beam energy spread. We will present results of energy spread measurements as well as simulations of the beam behavior based on the Vlasov formalism. |
||
|
||
WE6PFP060 | eRHIC Ring-Ring Design with Head-on Beam-Beam Compensation | 2637 |
|
||
The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam. |
||
TU5PFP033 | BNL 703 MHz SRF Cryomodule Demonstration | 891 |
|
||
This paper will present the preliminary results of the testing of the 703 MHz SRF cryomodule designed for use in the ampere class ERL under construction at Brookhaven National Laboratory. The preliminary VTA cavity testing, carried out at Jefferson Laboratory, demonstrated cavity performance of 20 MV/m with a Qo of 1x1010, results we expect to reproduce in the horizontal configuration. This test of the entire string assembly will allow us to evaluate all of the additional cryomodule components not previously tested in the VTA and will prepare us for our next milestone test which will be delivery of electrons from our injector through the cryomodule to the beam dump. This will also be the first demonstration of an accelerating cavity designed for use in an ampere class ERL, a key development which holds great promise for future machines. |
||
WE6PFP009 | RHIC Low Energy Tests and Initial Operations | 2498 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. There is significant interest in RHIC heavy ion collisions at center of mass energies of 5-50 GeV/u, motivated by a search for the QCD phase transition critical point. The low end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy of 19.6 GeV/u. There are several operational challenges in the low-energy regime, including harmonic number changes, longitudinal acceptance, magnet field quality, lattice control, and luminosity monitoring. We report on the results of beam tests with protons and gold in 2007–9, including first RHIC operations at √{(sNN)=9.2} GeV and low-energy nonlinear field corrections at √{(sNN)=5} GeV. |
||
WE6PFP062 | MeRHIC – Staging Approach to eRHIC | 2643 |
|
||
Funding: Work performed under US DOE contract DE-AC02-98CH1-886 Design of a medium energy electron-ion collider (MEeIC) is under development at Collider-Accelerator Department, BNL. The design envisions a construction of 4 GeV electron accelerator in a local area inside the RHIC tunnel. The electrons will be produced by a polarized electron source and accelerated in the energy recovery linac. Collisions of the electron beam with 100 GeV/u heavy ions or with 250 GeV polarized protons will be arranged in the existing IP2 interaction region of RHIC. The luminosity of electron-proton collisions at 1032 cm-2 s-1 level will be achieved with 40 mA CW electron current with presently available parameters of the proton beam. Efficient cooling of proton beam at the collision energy may bring the luminosity to 1033 cm-2 s-1 level. The important feature of the MEeIC is that it would serve as first stage of eRHIC, a future electron-ion collider at BNL with both higher luminosity and energy reach. The majority of the MEeIC accelerator components will be used for eRHIC. |
||
FR5RFP036 | Longitudinal Space Charge Effects near Transition | 4610 |
|
||
Studies of space charge effects in the Small Isochronous Ring (SIR) at Michigan State University revealed a fast longitudinal instability at and below the transition that could not be explained by the conventional negative mass instability. The observed beam behavior can be explained by the effect of the radial component of the coherent space charge force on the longitudinal motion. The transverse coherent space charge force effectively modifies the slip factor shifting the isochronous point and enhancing the negative mass instability. This paper presents results of numerical and experimental studies of the longitudinal beam dynamics in SIR and proposes an analytical model explaining the results. |