A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Podlech, H.

Paper Title Page
TU2RAI02 Accelerator R&D for the European ADS Demonstrator 668
 
  • J.-L. Biarrotte, F.B. Bouly, S. Bousson, T. Junquera, A.C. Mueller, G. Olry, E. Rampnoux
    IPN, Orsay
  • S. Barbanotti, P. Pierini
    INFN/LASA, Segrate (MI)
  • D. De Bruyn
    SCK-CEN, Mol
  • R. Gobin, M. Luong, D. Uriot
    CEA, Gif-sur-Yvette
  • H. Klein, H. Podlech
    IAP, Frankfurt am Main
 
 

An Accelerator Driven System (ADS) for transmutation of nuclear waste typically requires a 600 MeV - 1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and a few tens of mA for large industrial systems. Such a machine belongs to the category of the high-power proton accelerators, with an additional requirement for exceptional "reliability": because of the induced thermal stress to the subcritical core, the number of unwanted "beam-trips" should not exceed a few per year, a specification that is far above usual performance. This paper describes the reference solution adopted for such a machine, based on a so-called "fault-tolerant" linear superconducting accelerator, and presents the status of the associated R&D. This work is performed within the 6th Framework Program EC project "EUROTRANS".

 

slides icon

Slides

 
TH5PFP025 An Efficient 125mA, 40MeV Deuteron DTL for Fusion Material Tests 3248
 
  • C. Zhang, M. Busch, H. Klein, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main
 
 

Funding: * Work supported by BMBF contr. No. 06F134I & EU contr. No. EFDA/99-507ERB5005CT990061


The International Fusion Materials Irradiation Facility (IFMIF) is looking for an efficient drift-tube linac (DTL) which can accelerate a 125mA, CW deuteron beam from 5MeV to 40MeV with a high beam quality and nearly no beam loss. Taking advantages of the KONUS dynamics concept and the H-type structure, a compact DTL design has been realized by IAP, Frankfurt University, with satisfying performances. Including simulated errors, the feasibility of the IAP scheme has been carefully checked as well.

 
FR5REP060 Prototype Construction of a Coupled CH-DTL Proton Linac for FAIR 4908
 
  • R. M. Brodhage, S. Minaev, H. Podlech, U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main
  • G. Clemente, L. Groening
    GSI, Darmstadt
 
 

For the research program with cooled antiprotons at FAIR a dedicated 70MeV, 70mA proton injector is needed. The main acceleration of this room temperature injector will be provided by six coupled CH-cavities operated at 325MHz. Each cavity will be powered by a 3 MW klystron (6 in total). For the second acceleration unit from 11.7 to 24.3 MeV measurements on a 1:2 scaled model are performed. This tank is now ready for construction and will be used for RF power tests at GSI. The RF power test installations are underway. This paper presents the CH-DTL design and especially the status of the first power cavity.

 
FR5REP061 Recent Superconducting CH-Cavity Development 4911
 
  • M. Busch, M. Amberg, A. Bechtold, F.D. Dziuba, H. Liebermann, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main
 
 

The superconducting CH-cavity is the first multi-cell drift tube cavity for the low and medium energy range of proton and ion linacs. A 19 cell, beta=0.1 cavity has been developed and tested successfully with gradients of up to 7 MV/m. A piezo based fast tuner system has been developped. First horizontal tests of the cavity in a cryo-module with tuner are presented. Additionally, the construction of a new superconducting 325 MHz 7-gap CH-cavity has started. This cavity has an optimized geometry with respect to tuning possibilities, high power RF coupling and minimized end cell lengths. After low power tests it is planned to test this cavity with a 11.4 MeV/u beam delivered by the Unilac at GSI.