Paper | Title | Page |
---|---|---|
WE6PFP018 | Optimization of the LHC Separation Bumps Including Beam-Beam Effects | 2522 |
|
||
The LHC beams will cross each other and experience perturbations as a result of the beam-beam effect at the interaction points, which can result in emittance growth and halo creation. The beam-beam force is approximately linear for small offsets and highly non-linear for larger offsets with peaks in growth close to 0.3 and 1.5 σ separation. We present a study of the process of going into collisions in the LHC and use simulations to investigate on possible emittance blow-up. We analyze how the crossing scheme can be optimized to minimize the collapsing time of the separation bumps for given hardware constraints. |
||
FR5PFP074 | Self-Consistent Parallel Multi Bunch Beam-Beam Simulation Using a Grid-Multipole Method | 4482 |
|
||
The simulation code COMBI has been developed to enable the study of coherent beam-beam effects in the full collision scenario of the LHC, with multiple bunches interacting at multiple crossing points over many turns. The parallel version of COMBI was first implemented using a soft-Gaussian collision model which entails minimal communication between worker processes. Recently we have extended the code to a fully self-consistent collision model using a Grid-Multipole method, which allows worker processes to exchange charge and field information in a compact form which minimizes communication overhead. In this paper we describe the Grid-Multipole technique used and its adaptation to the parallel environment through pre- and post-processing of charge and grid data. Performance measurements in multi-core and Myrinet-cluster environments will be given. We will also present our estimates of the potential for very large-scale simulations on massively-parallel hardware, in which the number of simulated bunches ultimately approaches the actual LHC bunch population. |
||
WE6PFP039 | Emittance Growth due to Beam-Beam Effects with a Static Offset in Collision in the LHC | 2582 |
|
||
Under nominal operational conditions, the LHC bunches experience small unavoidable offset at the collision points caused by long range beam-beam interactions. Although the geometrical loss of luminosity is small, one may have to consider an increase of the beam transverse emittance, leading to a deterioration of the experimental conditions. In this work we evaluate and understand the dynamics of beam-beam interactions with static offsets at the collision point. A study of the emittance growth as a function of the offset amplitude in collisions is presented. Moreover, we address the effects coming from the beam parameters such as the initial transverse beam size, bunch intensity and tune. |