A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Phan, H.H.

Paper Title Page
TU6RFP047 Demonstration and Optimization of a Drive Laser for an X-Band Photoinjector 1653
 
  • D.J. Gibson, S.G. Anderson, C.P.J. Barty, S.M. Betts, F.V. Hartemann, M. J. Messerly, H.H. Phan, M. Shverdin, C. Siders
    LLNL, Livermore, California
 
 

Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.


Recently, a drive laser for an 2.86 GHz rf photoinjector, designed to provide a pulse that has a flat temporal and spatial profile, has been built, commissioned, and put into service as part of the LLNL Compton-scattering source program. This laser is based on an all-fiber oscillator and front-end amplification system, and provides both the laser light to generate the electrons as well as the rf signal that is amplified to accelerate them. Now, a new 11.424 GHz photoinjector is being developed, which has required a revised design of for the laser system. The higher frequency has placed more stringent requirements on the synchronization stability, delivered pulse length, and pulse rise times to maintain the desired emittance. Presented here are the overall design and measured performance of the current system and a discussion of what changes are being made to address observed shortcomings and more demanding requirements to make the system ready for the next-generation Compton-scattering source.