A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Petillo, J.J.

Paper Title Page
MO6RFP082 Theory and Modeling of Electron Emission from Cesiated Semiconductor Surfaces 566
 
  • K. L. Jensen, J.L. Shaw, J.E. Yater
    NRL, Washington, DC
  • D.W. Feldman, E.J. Montgomery, P.G. O'Shea, P.Z. Pan
    UMD, College Park, Maryland
  • N.A. Moody
    LANL, Los Alamos, New Mexico
  • J.J. Petillo
    SAIC, Burlington, Massachusetts
 
 

Funding: We gratefully acknowledge funding provided by the Joint Technology Office and the Office of Naval Research


Laser switched photocathodes are now the electron source of choice for short wavelength Free Electron Lasers. The photocathode requirements are profound: ideally, capabilities such as high peak and average current, high quantum efficiency (QE) in the visible, long lifetime in an rf injector and the ability to be repaired in situ are desired. We are pursuing cathodes with self-rejuvenating surfaces based on cesium dispenser cathode technology*,**, in which the physics of recesiation, evaporation, diffusion, and evolution of the surface coating and the QE are the metrics of performance. Here, we present predictive theoretical models of surface evolution and QE in a manner appropriate for inclusion in beam simulation codes, wherein emission non-uniformity and dark current affect emittance, beam halo, and dynamic evolution of bunched electron beams***. The emission models focus on bulk transport issues (including scattering processes) and surface conditions (including diffusion in the presence of random, non-uniform sub-monolayer coverage), and relate these factors to recent experimental characterizations of the surface evolution.


*Jensen, et al., JAP{10}2, 074902 ; Moody, et al., APL90, 114108.
**E. Montgomery, et al., (this conference)
***Petillo, et al., Proc IEEE PAC (2007); Jensen, et al., PRST-AB 11, 081001.

 
TU4RAC03 Modeling and Design of High-Power Inductive Output Tubes 767
 
  • E.L. Wright, K.T. Nguyen
    Beam-Wave Research, Inc., Union City
  • I.A. Chernyavskiy, J.J. Petillo
    SAIC, Burlington, Massachusetts
  • S.J. Cooke, B. Levush, J.A. Pasour
    NRL, Washington, DC
  • J.F. DeFord, B. Held
    STAAR/AWR Corporation, Mequon
 
 

Funding: Research funded by the Office of Naval Research and Naval Research Laboratory.


The accelerator community is making the transition to IOT technology for a number of high-power UHF and L-band applications as a result their inherent benefits. Scientists, funded by the Office of Naval Research and Naval Research Laboratory, are investigating the physics of the beam-wave interaction of the IOT. The time-domain electrostatic PIC code MICHELLE, in conjunction with the Analyst® suite of electromagnetic codes, were used to model the cathode-grid-anode structure that comprise the input cavity. Our investigation has led to the discovery of a delay mechanism responsible for intra-bunch charge formation, as evidenced by IOT X-ray generation with energies significantly higher than the cathode accelerating potential, increasing with RF output power. Time-domain PIC results of this effect will be shown. We will also present simulation results of the large-signal beam wave interaction in the output cavity using the code TESLA. Examples of single beam and multiple-beam IOTs will also be shown.

 

slides icon

Slides