A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Peterson, T.J.

Paper Title Page
TU5PFP034 Status of LHC Crab Cavity Cryostat 894
 
  • N. Solyak, T.J. Peterson, V. Poloubotko, V.P. Yakovlev
    Fermilab, Batavia
  • O. Brunner, E. Ciapala, T.P.R. Linnecar, J. Tuckmantel, W. Weingarten
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
 
 

Funding: This work has been partially performed under the auspices of the US department of energy


The complex LHC crab cavity design and the beam-line configuration pose very tight constraints for the cryostat design. An initial assessment of the LHC main RF cryostat points to a new design both from the RF and engineering point of view. The cavity and tunnel constraints are discussed in detail and an intial cryostat design along with the cryogenic circuit is presented.

 
WE6RFP005 Plan of the S1-Global Cryomodules for ILC 2790
 
  • N. Ohuchi, H. Hayano, N. Higashi, H. Nakai, K. Tsuchiya, A. Yamamoto
    KEK, Ibaraki
  • T.T. Arkan, H. Carter, M.S. Champion, J. Grimm, J.S. Kerby, D.V. Mitchell, T.J. Peterson, M.C. Ross
    Fermilab, Batavia
  • S. Barbanotti, C. Pagani, P. Pierini
    INFN/LASA, Segrate (MI)
  • L. Lilje
    DESY, Hamburg
 
 

In an attempt at demonstrating an average field gradient of 31.5 MV/m as per the design accelerating gradient for ILC, a program called S1-Global is in progress as an international research collaboration among KEK, INFN, FNAL, DESY and SLAC. The S1-Global cryomodule will contain eight superconducting cavities from FNAL, DESY and KEK. The cryomodule will be constructed by joining two half-size cryomodules, each 6 m in length. The module containing four cavities from FNAL and DESY will be constructed by INFN. The design of this module is based on an improved 3rd generation TTF design. KEK will modify the 6-meter STF cryomodule to contain four KEK cavities. The designs of the cryomodules are ongoing between these laboratories, and the operation of the system is scheduled at the KEK-STF from June 2010. In this paper, the S1-Global cryomodule plan and the module design will be presented. ‘S1-Global collaboration’ as a co-author.