Paper | Title | Page |
---|---|---|
MO6PFP017 | Magnetic Field Control in Synchrotrons | 169 |
|
||
The use of hadron beams delivered by normal conducting synchrotrons is highly attractive in various fundamental research applications as well as in the field of particle therapy. These applications require fast synchrotron operation modes with pulse-to-pulse energy variation and magnetic field slopes up to 10 T/s. The aims are to optimize the duty-cycle or to minimize treatment times for the patients as well as to provide extremely stable properties of the extracted beams, i.e. position and spill structure. Studies performed at the SIS18 synchrotron at GSI showed that not only the dipoles but the quadrupoles as well significantly contribute to the underlying time constants of the slowly extracted beam. An attempt has been made to measure the magnetic fields in synchrotron magnets with high precision and speed comparable to the current measurement with a DCCT. Additional magnetic field monitoring includes the retarding effects into the current control feedback loop neglecting the unfavourable dynamic effects from hysteresis and eddy currents. The presentation describes this controls approach, the results obtained at the HIT synchrotron and the SIS18 at GSI will be discussed. |
||
TH5RFP046 | An LTS SQUID-Based High Precision Measurement Tool for Nuclear Physics | 3555 |
|
||
Funding: This work was supported in part by the Gesellschaft für Schwerionenforschung Darmstadt, Germany. We describe an LTS SQUID-based high precision measurement tool for nuclear physics. This device makes use of the Cryogenic Current Comparator (CCC) principle and is able to measure e.g. the absolute intensity of a high energy ion beam extracted from a particle accelerator or the so-called dark current, generated by superconductive RF accelerator cavities at high voltage gradients. The CCC mainly consists of a high performance LTS-DC SQUID system, a special toroidal pick-up coil, and a meander-shaped superconductive magnetic ring structure. The design of the CCC requires a thorough knowledge of several noise contributions to achieve a high current resolution. As the SQUID and the pick-up coil are extremely sensitive to external magnetic fields it is necessary to shield both sufficiently against any disturbing field sources. Theoretical investigations showed that with strong attenuation of external noise sources an improvement of the sensor performance is dependent on the ferromagnetic core material imbedded in the pick-up coil. Several materials were investigated and the temperature- and the frequency dependence measured. The current results will be presented and discussed. |