A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Pellico, W.

Paper Title Page
MO6PFP015 Fabrication and Production Test Results of Multi-Element Corrector Magnets for the Fermilab Booster Synchrotron 163
 
  • G. Velev, J. DiMarco, C.C. Drennan, D.J. Harding, V.S. Kashikhin, O. Kiemschies, S. Kotelnikov, J.R. Lackey, A.V. Makarov, A. Makulski, R. Nehring, D.F. Orris, W. Pellico, E. Prebys, P. Schlabach, D.G.C. Walbridge
    Fermilab, Batavia
 
 

Funding: Work supported by the U.S. Department of Energy


The fabrication of the multi-element corrector magnets for the Fermilab Booster synchrotron has just been completed. These water-cooled packages include six different corrector types - normal and skews oriented dipole, quadrupole and sextupole elements. They will provide full orbit control, tune and chromaticity of the beam over the whole range of Booster energies, from 0.4 GeV to 8 GeV. During production, a set of quality assurance measurements were performed, including special thermal tests. This paper summarizes the results from these measurements as well as discussing some specific steps of the magnet fabrication process.

 
FR5RFP069 Intensity Dependent Beam Dynamics Studies in the Fermilab Booster 4692
 
  • L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois
  • D.O. McCarron
    IIT, Chicago, Illinois
  • W. Pellico, P. Spentzouris, E.G. Stern, R.E. Tomlin
    Fermilab, Batavia
 
 

Funding: This work supported by NSF grant No. 0237162, and DOE SCIentific Discovery through Advanced Computing: Accelerator science and simulation DE-PS02-07ER07-09


The FNAL Booster is a combined-function proton synchrotron with a bunch intensity of ~6·1010 protons; significantly greater than expected in the original design. The injection energy is 400 MeV (gamma factor 1.4), low enough for space charge forces to play a role in beam dynamics. The magnets are used directly as vacuum tanks, so the laminated pole surfaces contribute significantly to impedance. A study of the transverse coupling dependence on beam intensity is presented here. Experimental results are being analyzed using Synergia, a high-fidelity, parallel, fully 3D modeling code that includes both space charge and impedance dynamics. Previously, Synergia has always shown good agreement with experimental data. Our initial studies show that the direct space charge contribution to beam dynamics is too small to account for the increase in the coupling seen experimentally, corroborating analytic results. Parametric studies of the impedance needed to match the measured coupling are being done. Agreement between simulation and experiment should provide an independent measure of the Booster impedance, which has been analytically modeled and calculated elsewhere.