Paper | Title | Page |
---|---|---|
TU5PFP098 | The Elettra Radiofrequency System Status and Developments | 1066 |
|
||
The full energy injection is now the standard procedure for the Elettra synchrotron radiation light source. The four RF storage ring plants have been benefited by this procedure in terms of reliability and stability of operation. The injector booster RF plant is running well. A new High Order Mode (HOM) diagnostic board has been implemented using the radiofrequency (RF) cavity’s signal to improve the HOM’s detection. The analysis and the performances of the new Inductive Output Tube (IOT)based RF power transmitter are presented. |
||
WE5PFP023 | The Backward TW Structure for the FERMI@Elettra Linac | 2042 |
|
||
Funding: The work was supported in part by the Italian Ministry of University and Research under grant FIRB-RBAP045JF2 or grant FIRB-RBAP06AWK3 or grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3 The FERMI@ELETTRA project will use the existing ELETTRA linac. The linac includes seven accelerating sections, each section is a backward traveling (BTW) structure comprised of 162 nose re-entrant cavities coupled magnetically. Furthermore, there are specialized input and output cavities specifically designed to match the structure to the RF source and load. These BTW accelerating structures work on the 3pi/4 mode which was chosen to optimize the structure efficiency and to achieve a simple RF tuning setup. These accelerating sections are powered by a TH2132A 45 MW klystron providing a 4.5 microsecond rf pulse and are coupled to a Thomson CIDR. In this paper the 3pi/4 backward BTW structures are investigated and the results of the electromagnetic simulations are presented. |