Paper | Title | Page |
---|---|---|
TH5PFP063 | A Dispersion Free Three-Dimensional Space-Charge Modeling Method | 3348 |
|
||
Funding: This work is supported by AFOSR under grant FA9550-08-1-0160. We present the theoretical and numerical results of a dispersion free time-dependent Green's function method which can be utilized for calculating electromagnetic space-charge fields due to arbitrary current in a conducting pipe. since the Green's function can be expanded in terms of solutions to the wave equation, the numerical solutions to the fields also satisfy the wave equation yielding a completely dispersion free numerical method. This technique is adequately suited for modeling bunched space-charge dominated beams, such as those found in high-power microwave sources, for which the effects of numerical grid dispersion and numerical Cherenkov radiation are typically found when using FDTD type methods. |
||
TH5PFP064 | Time-Retardation Effect Causing Beamloss in the RF Photoinjector | 3351 |
|
||
Funding: Supported in part by DOE(DE-FG029ER40747) and in part by NSF(PHY-0552389) Near the cathode in a photoinjector, the electron beam is emitted with low energy, and its dynamics are strongly affected by the beam's space-charge fields. This can cause beam loss at the cathode due to virtual cathode formation. In general, a fully electromagnetic code can correctly predict the beam space-charge fields, beam dynamics, and beam loss. However, an electrostatic type algorithm would overestimate the space-charge fields since it does not incorporate relativistic time-retardation effects which limit the size of the fields near the cathode. IRPSS (Indiana RF Photocathode Source Simulator) can calculate the electromagnetic space-charge fields using a Green’s function method to a high-precision, and can track beam dynamics in the RF photoinjector. Using IRPSS, we simulated the beam dynamics and beam loss near the cathode for the Argonne Wakefield Accelerator 1.3 GHz gun* and compared those results to electrostatic codes, such as PARMELA and ASTRA. *P. Schoessow, PAC 2009. |