A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Papotti, G.

Paper Title Page
FR2RAC02 Measurement and Analysis of SPS Kicker Magnet Heating and Outgassing with Different Bunch Spacing 4264
 
  • M.J. Barnes, F. Caspers, K. Cornelis, L. Ducimetière, E. Mahner, G. Papotti, G. Rumolo, V. Senaj, E.N. Shaposhnikova
    CERN, Geneva
 
 

Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, over several hours, even above the Curie temperature of the ferrite. At present the nominal bunch spacing in the SPS is 25 ns, however for an early stage of LHC operation it is preferable to have 50 ns bunch spacing. Machine Development (MD) studies have been carried out with an inter-bunch spacing of 25 ns, 50 ns or 75 ns. For some of the SPS kicker magnets the 75 ns bunch spacing resulted in considerable beam induced heating. In addition the MDs showed that 50 ns bunch spacing could result in a very rapid pressure rise in the kicker magnet and thus cause an interlock. This paper discusses the MD observations of the SPS kickers and analyses the available data to provide explanations for the phenomena: possible remedies are also discussed.

 

slides icon

Slides

 
FR5RFP034 Transverse Impedance Localization Using Dependent Optics 4604
 
  • R. Calaga
    BNL, Upton, Long Island, New York
  • G. Arduini, E. Métral, G. Papotti, D. Quatraro, G. Rumolo, B. Salvant, R. Tomás
    CERN, Geneva
 
 

Funding: This work has been partially performed under the auspices of US department of energy


Measurements of transverse impedance in the SPS to track the evolution over the last few years show discrepancies compared to the analytical estimates of the major contributors. Recent measurements to localize the major sources of the transverse impedance using intensity dependent optics are presented. Some simulations using HEADTAIL to understand the limitations of the reconstruction and related numerical aspects are also discussed.

 
FR5RFP047 Analysis of the Transverse SPS Beam Coupling Impedance with Short and Long Bunches 4640
 
  • B. Salvant
    EPFL, Lausanne
  • G. Arduini, H. Burkhardt, H. Damerau, W. Höfle, E. Métral, G. Papotti, G. Rumolo, B. Salvant, R. Tomás, S.M. White
    CERN, Geneva
  • R. Calaga, R. De Maria
    BNL, Upton, Long Island, New York
 
 

The upgrade of the CERN Large Hadron Collider (LHC) would require a four- to fivefold increase of the single bunch intensity presently obtained in the Super Proton Synchrotron (SPS). Operating at such high single bunch intensities requires a detailed knowledge of the sources of SPS beam coupling impedance, so that longitudinal and transverse impedance reduction campaigns can be planned and performed effectively if needed. In this paper, the transverse impedance of the SPS is studied by injecting a single long bunch into the SPS, and observing its decay without RF. This particular setup enhances the resolution of the frequency analysis of the longitudinal and transverse bunch signals acquired with strip line couplers connected to a fast data acquisition. It also gives access to the frequency content of the transverse impedance. Results from measurements with short and long bunches in the SPS performed in 2008 are compared with simulations and theoretical predictions.

 
TU6PFP083 Conceptual Design of the ESS-Scandinavia 1485
 
  • S. Peggs, R. Calaga
    BNL, Upton, Long Island, New York
  • R.D. Duperrier
    CEA, Gif-sur-Yvette
  • M. Eshraqi, G. Papotti, F. Plewinski
    ESS-S, Lund
  • A. Jansson
    Fermilab, Batavia
  • M. Lindroos, J. Stovall
    CERN, Geneva
 
 

Funding: ESS-S Scandinavia Consortium


The conceptual design of the European Spallation Source-Scandinavia (ESS-S) is presented. The accelerator system baseline draws heavily on state-of-the-art mature technologies that are being employed in the CERN Linac4 and SPL projects, although advances with spoke resonator and sputtered superconducting cavities are also being evaluated for reliable performance. Irradiation damage due to proton beam losses is a key issue for linac and target components. Their optimized design is performed from an engineering perspective, using the last updated versions of mechanical design codes which were already qualified for irradiated components. Finally, future upgrades of power and intensity of the proton linac are considered, including the design optimization of the Target Station (proton/neutron convertor), with the possibility of increasing the average pulsed power deposition up to 7.5 MW. All possible upgrades will be taken into account for the final design review, in the frame of the costs and constraints given with the site decision.