A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Palumbo, L.

Paper Title Page
TU5RFP075 Status of the SPARX-FEL Project 1260
 
  • L. Palumbo
    INFN/LNF, Frascati (Roma)
 
 

The SPARX-FEL project aims at producing ultra high peak brightness electron beams in the 1.5 - 2.4 GeV range with the goal of generating FEL radiation in the 0.6-40 nm range. The construction is planned in two steps ,starting with a 1.5 GeV Linac. The project layout includes both RF-compression and magnetic chicane techniques, in order to provide the suitable electron beam to each one of three undulator systems which will generate VUV-EUV, Soft X-Rays and Hard X-rays radiation respectively This will be distributed in dedicated beamlines suitable for applications in basic science and technology: time resolved X-ray diffraction with pump and probe experiments, nanolithography processes, biological proteins, nano-particles and clusters, coherent diffraction and holographic X-ray techniques, nano-imaging. The project was funded by the Italian Department of Research, MIUR, and by the local regional government, Regione Lazio; The associated test-facility, SPARC, located at LNF, has been successfully commissioned: the SPARX-FEL project foresees the construction of a user facility inside the Tor Vergata campus by a collaboration among CNR, ENEA, INFN and the Università di Tor Vergata itself.

 
TU5RFP076 Mechanical Layout and Civil Infrastructures of the SPARX-FEL Complex 1263
 
  • S. Tomassini, C. Biscari, R. Boni, M. Esposito, A. Ghigo, L. Palumbo, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  • M. Del Franco, L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma)
  • C. Quaresima
    ISM-CNR, Rome
 
 

The SPARX-FEL project consists in an X-ray-FEL facility which aim is the generation of electron beams characterized by ultra-high peak brightness at the energy of 1.5 and 2.4 GeV. This facility will be built in the Tor Vergata University area in Rome. The paper describe the engineering aspects of the mechanical design of the accelerator, photo-injector, LINACs, bunch compressors, beam distribution, undulators and experimental stations. Morover the integration of accelerator with the civil infrastractures is discussed.

 
WE5PFP012 RF Deflector for Bunch Length Measurement at Low Energy at PSI 2012
 
  • A. Falone, H. Fitze, R. Ischebeck, Y. Kim, M. Pedrozzi, V. Schlott, B. Steffen, L. Stingelin
    PSI, Villigen
  • D. Alesini, L. Ficcadenti, L. Palumbo
    INFN/LNF, Frascati (Roma)
 
 

RF deflectors are crucial diagnostic tools for bunch length and slice emittance measurements with sub-picosecond resolution. Their use is essential in commissioning and operation of VUV and X-ray FELs. The 250MeV FEL injector, under construction at PSI, will use two of them. The first one will be installed after the gun at low energy (~7MeV), the second one at the end of the Linac at high energy (250MeV). The first RF deflector consists of a single cell standing wave cavity working on the TM110 deflecting mode, and tuned at 2997.912 MHz (frequency of the linac structures). In this note we report the motivation of this measurement, beam dynamics and beam diagnostics considerations and the RF design and simulations of this cavity.

 
MO6RFP071 Velocity Bunching Experiments at SPARC 533
 
  • M. Ferrario, D. Alesini, M. Bellaveglia, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, L. Cultrera, G. Di Pirro, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, C. Marrelli, M. Migliorati, A. Mostacci, E. Pace, L. Palumbo, B. Spataro, C. Vaccarezza, C. Vicario
    INFN/LNF, Frascati (Roma)
  • G. Andonian, G. Marcus, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • A. Bacci, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano
  • A. Cianchi, B. Marchetti
    INFN-Roma II, Roma
  • L. Giannessi, M. Labat, M. Quattromini, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • M. Rezvani Jalal
    University of Tehran, Tehran
  • M. Serluca
    INFN-Roma, Roma
 
 

One of the main goals of the SPARC high brightness photoinjector is the experimental demonstration of the emittance compensation process while compressing the beam with the velocity bunching technique, also named RF compressor. For this reason, the first two S-band travelling wave accelerating structures downstream of the RF gun are embedded in a long solenoid, in order to control the space charge induced emittace oscillations during the compression process. An RF deflecting cavity placed at the exit of the third accelerating structure allows bunch length measurements with a resolution of 50 μm. During the current SPARC run a parametric experimental study of the velocity bunching technique has been performed. The beam bunch length and projected emittance have been measured at 120 MeV as a function of the injection phase in the first linac, and for different solenoid field values. In this paper we describe the experimental layout and the results obtained thus far. Comparisons with simulations are also reported.

 
TH6REP049 Advanced Longitudinal Diagnostic for Single-Spike Operation at the SPARC FEL 4063
 
  • G. Marcus, G. Andonian, A. Fukasawa, P. Musumeci, S. Reiche, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Ferrario, L. Palumbo
    INFN/LNF, Frascati (Roma)
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma)
 
 

It has been suggested that an ultra-short, very low charge beam be used to drive short wavelength single-spike operation at the SPARC FEL. This paper explores the development and construction of a longitudinal diagnostic capable of completely characterizing the radiation based on the Frequency-Resolved Optical Gating (FROG) technique. In particular, this paper explores a new geometry based on a Transient-Grating (TG) nonlinear interaction and includes studies of start to end simulations for pulses at the SPARC facility using GENESIS and reconstructed using the FROG algorithm. The experimental design, construction and initial testing of the diagnostic are also discussed.

 
TH4PBC05 Recent Results of the SPARC FEL Experiments 3178
 
  • M. Ferrario, D. Alesini, M. Bellaveglia, M. Benfatto, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, A. Marcelli, A. Marinelli, C. Marrelli, M. Migliorati, A. Mostacci, E. Pace, L. Palumbo, L. Pellegrino, R. Ricci, U. Rotundo, C. Sanelli, F. Sgamma, B. Spataro, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, I. Boscolo, F. Broggi, F. Castelli, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano
  • M. Bougeard, B. Carré, D. Garzella, M. Labat, G. Lambert, H. Merdji, P. Salières, O. Tchebakoff
    CEA, Gif-sur-Yvette
  • L. Catani, A. Cianchi, B. Marchetti
    INFN-Roma II, Roma
  • F. Ciocci, G. Dattoli, M. Del Franco, A. Dipace, A. Doria, G.P. Gallerano, L. Giannessi, E. Giovenale, G.L. Orlandi, S. Pagnutti, A. Petralia, M. Quattromini, C. Ronsivalle, E. Sabia, I.P. Spassovsky, V. Surrenti
    ENEA C.R. Frascati, Frascati (Roma)
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • M. Mattioli, M. Serluca
    INFN-Roma, Roma
  • M. Rezvani Jalal
    University of Tehran, Tehran
  • J.B. Rosenzweig
    UCLA, Los Angeles, California
 
 

The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive 500 nm FEL experiments in SASE, Seeding and Single Spike configurations. The SPARC photoinjector is also the test facility for the recently approved VUV FEL project named SPARX. The second stage of the commissioning, that is currently underway, foresees a detailed analysis of the beam matching with the linac in order to confirm the theoretically prediction of emittance compensation based on the “invariant envelope” matching , the demonstration of the “velocity bunching” technique in the linac and the characterisation of the spontaneous and stimulated radiation in the SPARC undulators. In this paper we report the experimental results obtained so far. The possible future energy upgrade of the SPARC facility to produce UV radiation and its possible applications will also be discussed.

 

slides icon

Slides

 
WE1PBC05 Development of an Ultra-High Repetition Rate S-Band RF Gun for the SPARX Project 1815
 
  • L. Faillace, L. Palumbo
    Rome University La Sapienza, Roma
  • P. Frigola
    RadiaBeam, Marina del Rey
  • A. Fukasawa, B.D. O'Shea, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • B. Spataro
    INFN/LNF, Frascati (Roma)
 
 

We present here the design, including RF modelling, cooling, and thermal stress and frequency detuning, of an S-band RF gun capable of running near 500 Hz, for application to FEL and inverse Compton scattering sources. The RF design philosophy incorporates many elements in common with the LCLS gun, but the approach to managing cooling and mechanical stress diverges significantly. We examine the new proprietary approach of RadiaBeam Technologies for fabricating copper structures with intricate internal cooling geometries. We find that this approach may enable very high repetition rate, well in excess of the nominal project this design is directed for, the SPARX FEL.


*C.Limborg et al.,“RF Design of the LCLS Gun”,LCLS Technical Note LCLS-TN-05-3
**P. Frigola et al.,“A Novel Fabrication Technique for the Production of RF Photoinjectors”,published in EPAC08.

 

slides icon

Slides

 
TH5PFP086 About Non Resonant Perturbation Field Measurement in Standing Wave Cavities 3407
 
  • A. Mostacci, R. Da Re, L. Palumbo
    Rome University La Sapienza, Roma
  • D. Alesini, L. Ficcadenti, B. Spataro
    INFN/LNF, Frascati (Roma)
 
 

We discuss the use of non resonant bead pull technique for measuring fields in standing wave accelerating structures. From the Steele perturbation theory, one can derive the relation between the magnitude and phase of the field in the cavity and the complex reflection coefficient. The effect of the bead size, the calibration of the bead and the comparison with the more common resonant techniques are addressed. As an example, we discuss the measurement on a X-band bi-periodic cavity proposed for linearizing emittance at the Frascati photo-injector SPARC.

 
FR5PFP056 Beam Dynamics and RF Cavity Design of a Standing/Traveling-Wave Hybrid Photoinjector for High Brightness Beam Generation 4434
 
  • A. Fukasawa, H. Badakov, B.D. O'Shea, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • D. Alesini, L. Ficcadenti, B. Spataro
    INFN/LNF, Frascati (Roma)
  • L. Palumbo
    Rome University La Sapienza, Roma
 
 

A hybrid photoinjector, which we present here, consists of a 6-cell traveling wave structure with a standard 1.6-cell RF gun attached to the one end and a 3-m long linac following for further acceleration. With this structure, no reflection observed at the input port. This enables to build the accelerator without a circulator which limits the power and the frequency of RF. From the beam dynamics point of view, the beam is produced as the normal RF guns and gets short by velocity bunching in the traveling wave section right after the gun. The peak current can reach more than 1 kA, with about 2 mm.mrad of the emittance at 20 MeV. We discuss more details about the beam dynamics as well as the RF structure.