Paper | Title | Page |
---|---|---|
TU1GRI03 | Muon Collider Progress | 652 |
|
||
In the past few years, there have been a number of advances in the design and supporting R&D for a machine to cool, accelerate and collide TeV muon beams. This talk will review progress and discuss how such a machine might evolve from programs to build high intensity proton sources and neutrino factories. |
||
|
||
TU5PFP004 | Effect of External Magnetic Fields on the Operation of RF Cavities | 809 |
|
||
Funding: This work supported by the U.S. Department of Energy, contract no. DE-AC02-98CH10886. Beam cooling for a future neutrino factory or muon collider requires high gradient rf cavities in the presence of strong magnetic fields. Experimental measurements suggested that the maximum accelerating gradient drops as the axial magnetic field increases. Little is known about the explicit dependence of the gradient on the strength of the magnetic field. The experimental observation of dark currents arising from local regions with enhanced surface field intensities under external magnetic fields however, suggests a new possible mechanism of breakdown based on electron field emission. A model of magnetic field breakdown is proposed. We illustrate that the field emitted electrons are focused by the external fields into small spots on the other side of the cavity and estimate the energy density they deliver to the wall. We show that this energy increases with the magnetic field, and this may lead to melting of the cavity surface. The influence of local fields at the emitter side is discussed and the extent to which space-charge affects this process is investigated. Results of our model are compared with recent experimental data from the 201 MHz and 805 MHz cavities. |
||
WE5PFP020 | Multipacting Simulation for Muon Collider Cavity | 2033 |
|
||
Funding: This work was supported by DOE contract No. DE-AC02-76SF00515 NERSC The muon cooling cavity for Muon Collider works under strong external magnetic fields. It has been observed that this external magnetic field can enhance the multipacting activities and dark current heating. As part of a broad effort to optimize external magnetic field map and cavity shape for minimal dark current and multipacting, we use SLAC’s 3D parallel code Track3P to analyze the multipacting and dark current issues of the design. Track3P has been successfully used to predict multipacting phenomena in cavity and coupler designs. It provides unprecedented capabilities for simulating large-scale accelerator structure systems, including realistic 3D details and low turn-around times. In this paper, we present the comprehensive multipacting and dark current simulations for Muon Collider cavities. |