Paper | Title | Page |
---|---|---|
TU6PFP030 | 6D Acceleration Studies in Proton Fixed Field Alternating Gradient Accelerator Lattices | 1354 |
|
||
It has been proposed to use a proton Fixed Field Alternating Gradient (FFAG) accelerator to drive an Accelerator Driven Subcritical Reactor (ADSR) as they have the potential to provide high current beams to energies needed, 500 MeV to 1 GeV. This paper describes the results of 6D simulations of acceleration in possible lattice designs to explore longitudinal acceptance. This is needed to evaluate accelerator duty cycle and options for acceleration such as harmonic number jumping. |
||
WE5RFP047 | A Recirculating Linac as a Candidate for the UK New Light Source Project | 2376 |
|
||
A design for a free electron laser driver which utilises 1.3 GHz superconducting CW accelerating structures is studied. The machine will deliver longitudinally compressed electron bunches with repetition rates of 1 kHz with a possibility to increase up to 1 MHz. Tracking is performed from an NC RF photocathode gun, accelerating and compressing in three stages to obtain peak current greater than 1 kA at 2.2 GeV. This is achieved through injection at 200 MeV, then recirculating twice in a 1 GeV main linac. The optics design, optimisation procedures and start to end modelling of this system are presented. |
||
WE6RFP012 | Simulation of the LHC Collimation System Using MERLIN | 2805 |
|
||
The LHC Collimators are designed to remove halo particles such that they do not impinge onto either detectors or other vulnerable regions of the storage ring. However, the very high 7 TeV energy means that their design is critical, as is the modelling of the absorption, scattering and wakefield effects upon the passing bunches. Existing simulations are being performed using Sixtrack and K2. We compare these simulations with results obtained using the MERLIN code, which includes a fuller description of the scattering and wakefield processes. |
||
TU5RFP022 | A Proposed New Light Source Facility for the UK | 1141 |
|
||
The New Light Source (NLS) project was launched in April 2008 by the UK Science and Technology Facilities Council (STFC) to consider the scientific case and develop a conceptual design for a possible next generation light source based on a combination of advanced conventional laser and free-electron laser sources. Following a series of workshops and a period of scientific consultation, the science case was approved in October 2008 and the go-ahead given to continue the project to the design stage. In November the decision was taken that the facility will be based on cw superconducting technology in order to provide the best match to the scientific objectives. In this paper we present the source requirements, both for baseline operation and with possible upgrades, and the current status of the design of the accelerator driver and free-electron laser sources to meet those requirements. |
||
TH4GAC03 | PAMELA Overview: Design Goals and Principles | 3142 |
|
||
Funding: EPSRC EP/E032869/1 The PAMELA (Particle Accelerator for MEdicaL Applications) project is to design an accelerator for proton and light ion therapy using non-scaling Fixed Field Alternating Gradient (FFAG) accelerators, as part of the CONFORM project, which is also constructing the EMMA electron model of a non-scaling FFAG at Daresbury. This paper presents an overview of the PAMELA design, and a discussion of the design goals and the principles used to arrive at a preliminary specification of the accelerator. |
||
|