Paper | Title | Page |
---|---|---|
MO6PFP061 | Solenoid Focusing Lenses for the R&D Proton Linac at Fermilab | 271 |
|
||
Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359 An R&D proton linac is under construction at FNAL and it will use solenoid lenses in the beam transport line. Because the needed focusing field is on the level of 6 Tesla, superconducting systems are used. In the low energy part of the linac, which uses room temperature accelerating structures, the lenses are placed in stand-alone cryostats. Production of the lenses and cryostats for the low energy section is under way. In the superconducting accelerating sections, the lenses are mounted inside RF cryomodules. Although focusing solenoids for the high energy sections have been designed and prototypes tested, R&D is still ongoing to address magnetic shielding and alignment issues. This report summarizes the performance of lenses for the low-energy part of the linac and presents the status of ongoing R&D. |
||
MO6PFP015 | Fabrication and Production Test Results of Multi-Element Corrector Magnets for the Fermilab Booster Synchrotron | 163 |
|
||
Funding: Work supported by the U.S. Department of Energy The fabrication of the multi-element corrector magnets for the Fermilab Booster synchrotron has just been completed. These water-cooled packages include six different corrector types - normal and skews oriented dipole, quadrupole and sextupole elements. They will provide full orbit control, tune and chromaticity of the beam over the whole range of Booster energies, from 0.4 GeV to 8 GeV. During production, a set of quality assurance measurements were performed, including special thermal tests. This paper summarizes the results from these measurements as well as discussing some specific steps of the magnet fabrication process. |
||
WE5PFP078 | Development of SCRF Cavity Resonance Control Algorithms at Fermilab | 2192 |
|
||
Funding: Work supported by U.S. Department of Energy under contract DE-AC02-76CH03000 Progress has been made at Fermilab on the development of feed-forward and feed-back algorithms used to compensate SCRF cavity detuning, which is caused by Lorentz Forces and microphonics. Algorithms that have been developed and tested for the 1.3GHz (ILC-style) SCRF cavities (Capture Cavity II) will be reported. |