A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Olry, G.

Paper Title Page
WE5PFP029 RF Power Coupler Developments for Superconducting Spoke Cavities at IPN Orsay 2055
 
  • E. Rampnoux, S. Berthelot, P. Blache, S. Bousson, J. Lesrel, L. Lukovac, G. Olry
    IPN, Orsay
 
 

Funding: EURISOL Project


The development of RF power couplers for superconducting low-beta SPOKE cavities, performed at Nuclear Physics Institute in Orsay in the framework of the EURISOL Design Study, has led to the design of a 20 kW RF power coaxial coupler showing very good RF performances and the implementation of a test stand to condition two of these couplers at 20 kW CW power in the traveling wave mode at 352,2 MHz by using a half-wave resonant cavity. Composed by a ceramic disk, the coaxial power coupler developed shows on one hand a very good 50 ohms matching on a large bandwidth like 760 MHz, after an electromagnetic optimisation of the window area, and on the other hand a simplified design with regard to the classic coaxial couplers. Characteristics of the power coupler and the test stand will be described, and the low RF power test of the coaxial window and the conditioning at high RF power of two couplers will be presented.

 
TU2RAI02 Accelerator R&D for the European ADS Demonstrator 668
 
  • J.-L. Biarrotte, F.B. Bouly, S. Bousson, T. Junquera, A.C. Mueller, G. Olry, E. Rampnoux
    IPN, Orsay
  • S. Barbanotti, P. Pierini
    INFN/LASA, Segrate (MI)
  • D. De Bruyn
    SCK-CEN, Mol
  • R. Gobin, M. Luong, D. Uriot
    CEA, Gif-sur-Yvette
  • H. Klein, H. Podlech
    IAP, Frankfurt am Main
 
 

An Accelerator Driven System (ADS) for transmutation of nuclear waste typically requires a 600 MeV - 1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and a few tens of mA for large industrial systems. Such a machine belongs to the category of the high-power proton accelerators, with an additional requirement for exceptional "reliability": because of the induced thermal stress to the subcritical core, the number of unwanted "beam-trips" should not exceed a few per year, a specification that is far above usual performance. This paper describes the reference solution adopted for such a machine, based on a so-called "fault-tolerant" linear superconducting accelerator, and presents the status of the associated R&D. This work is performed within the 6th Framework Program EC project "EUROTRANS".

 

slides icon

Slides