Paper | Title | Page |
---|---|---|
MO6PFP005 | Steering Magnet Design for a Limited Space | 136 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A steering magnet is not a major component in a beam line, however it is usually needed in any real set up. Also it is hard to estimate the required field strength before the beam line construction, since the strength needed is determined by misalignnment errors of other devises. Sometimes it is difficult to find enough space to install steering magnets because of other constraints on the length of the beamline. We compare two extreme designs of steering magnets. The first one is very thin steering magnet design which occupies only 6 mm in length and can be additionally installed as needed. The other is realized by applying extra coil windings to a quadrupole magnet and does not consume any length. We will present both designs in details and will discuss pros and cons. |
||
MO6RFP025 | Construction of the BNL EBIS Preinjector | 407 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A new heavy ion preinjector, consisting of an Electron Beam Ion Source (EBIS), an RFQ, and IH Linac, is under construction at Brookhaven National Laboratory. This preinjector will provide ions of any species at an energy of 2 MeV/u, resulting in increased capabilities for the Relativistic Heavy Ion Collider, and the NASA Space Radiation Laboratory programs. Initial operation of the EBIS and RFQ will be reported on, along with the status of the construction and installation of the remainder of the preinjector. |
||
MO6RFP026 | Metal Ion Beam Acceleration with DPIS | 410 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Work supported by RIKEN. We have studied a laser ion source in Brookhaven National Laboratory since 2006. In November 2008, we had first beam through an RFQ and the measured current reached about 50 mA with carbon beam. The RFQ and ion source were originally commissioned in Japan and moved to BNL in 2006. We will report various acceleration test results at the conference. |
||
MO6RFP027 | Results of LEBT/MEBT Reconfiguration at BNL 200 MeV Linac | 411 |
|
||
The low energy (35 keV) and medium energy (750 keV) transport lines for (un)polarized H- have been reconfigured to reduce beam losses and the beam emittance out of the 200 MeV Linac. The medium energy line in the original layout was 7 m long, and had ten quadrupoles, two beam choppers, and three bunchers. The bunchers were necessary to keep the beam bunched at the entrance of the Linac. About 35% beam loss occurred, and the emittance growth was several fold. In the new layout, the 750 keV line is only 0.7 m long, with three quads and one buncher. To preserve beam polarization in the 35 keV line, the solenoid in front of the RFQ (35 keV to 750 keV) was replaced with an Einzel lens. To reduce the spin-precession in the LEBT, which may cause the depolarization, a 47.4 degree bend was removed and focusing solenoid in front of RFQ was replaced with an Einzel lens. We will present the experimental result of the upgrade. |
||
FR5REP046 | Beam Commissioning of the RFQ for the RHIC-EBIS Project | 4872 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A new 4 rod RFQ fabricated by IAP, Frankfurt, is being commissioned at Brookhaven National Laboratory. The RFQ will accelerate intense heavy ion beams provided by an Electron Beam Ion Source (EBIS) up to 300 keV/u. The RFQ will accelerate a range of Q/M from 1 to 1/6, and the accelerated beam will be finally delivered to RHIC and NSRL. The first beam test is planned to use beams from the BNL Test EBIS. The detailed test results will be presented. |