A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Okada, Y.

Paper Title Page
WE5PFP081 Digital Low-Level RF Control System with Four Intermediate Frequencies at STF 2198
 
  • T. Matsumoto, S. Fukuda, H. Katagiri, S. Michizono, T. Miura, Y. Yano
    KEK, Ibaraki
  • Y. Okada
    NETS, Fuchu-shi
 
 

Digital low-level rf (LLRF) control system has been installed in many linear accelerators to stabilize the accelerating field. In the digital LLRF system, the rf signal is down-converted into intermediate frequency for sampling at analog-to-digital converter (ADC) and the number of ADC required for vector sum feedback operation is equal to the number of cavity. In order to decrease the number of the ADCs required, a digital LLRF control system using different four intermediate frequencies has been developed at STF (Superconducting RF Test Facility) in KEK. This digital LLRF control system was operated with four superconducting cavities and the rf field stability under feedback operation was estimated. The result of the performance will be reported.

 
WE5PFP082 Digital Feedback Control for 972 MHz RF System of J-PARC Linac 2201
 
  • S. Michizono, Z. Fang, T. Matsumoto, T. Miura, S. Yamaguchi
    KEK, Ibaraki
  • T. Kobayashi
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Y. Okada
    NETS, Fuchu-shi
 
 

Upgrade of J-PARC linac has been planed using 972 MHz rf system. The rf field regulation is required to be less than ±1% in amplitude and ±1deg. in phase. The basic digital llrf concept is same as the present 324 MHz llrf system using a compact PCI crate. The main alterations are rf and clock generator (RF&CLK), mixer and IQ modulator (IQ&Mixer) and digital llrf algorithm. Since the typical decay time is faster (due to higher operational frequency than present 324 MHz cavity), chopped beam compensation is one of the main concerns. Performance of the digital feedback system using a cavity simulator is summarized.

 
WE5PFP083 Vector-Sum Control of Superconducting RF Cavities at STF 2204
 
  • S. Michizono, S. Fukuda, H. Katagiri, T. Matsumoto, T. Miura, Y. Yano
    KEK, Ibaraki
  • Y. Okada
    NETS, Fuchu-shi
 
 

Vector-sum control of 4 superconducting cavities is examined at STF in KEK. The digital llrf control is carried out and the stabilities of rf fields are obtained. Various studies such as feedback margin necessary for enough field regulation, effects of perturbations of cavity detuning or klystron HV and so on. Performance degradation by elimination of circulators is also studied from the viewpoint of llrf system.

 
WE5PFP084 Evaluation of LLRF Stabilities at STF 2207
 
  • T. Miura, S. Fukuda, H. Katagiri, T. Matsumoto, S. Michizono, Y. Yano
    KEK, Ibaraki
  • Y. Okada
    NETS, Fuchu-shi
 
 

In STF phass-1, four-cavities are operated with vector-sum feedback (FB) control. The FB control instabilities arising from passband of TM010 mode other than π mode with FB loop-delays were measured. Further, a feedforward (FF) table was used in combination with FB control, which improved the flatness of the flat-top region. A method for reduction of overshoot in FB + FF operation is also proposed. By electrically developing a quasi-beam, the response for quasi-beam injection was also measured, and the correction on beam-loading was performed.

 
WE5PFP088 Direct Sampling of RF Signal for 1.3 GHz Cavity 2216
 
  • Y. Okada
    NETS, Fuchu-shi
  • S. Fukuda, H. Katagiri, T. Matsumoto, S. Michizono, T. Miura, Y. Yano
    KEK, Ibaraki
 
 

Intermediate-frequency conversion technique has been widely used for rf signal detection. However, this technique has disadvantages such as temperature dependence higher order modes of downconverters. One of our recent attractive developments is the high-speed data acquisition system that combines commercial FPGA board ML555 and fast ADC (ADS5474 14bit, maximum 400MS/s and bandwidth of 1.4 GHz). Direct measurements of 1.3 GHz rf signals are carried out with 270 MHz sampling. The direct sampling method can eliminate a down-converter and avoid calibration of non-linearity of the down-converter. These results are analyzed and compared with conventional measurement system.