Paper | Title | Page |
---|---|---|
TH5PFP004 | Final Design of the IFMIF-EVEDA Low Energy Beam Transport Line | 3190 |
|
||
During the EVEDA (Engineering Validation and Engineering Design Activities) phase of the IFMIF (International Fusion Materials Irradiation Facility) project, a 125 mA/9 MeV accelerator prototype will be built, tested and operated in Rokkasho-Mura (Japan). The injector section of this accelerator is composed by an ECR source, delivering a 140 mA deuteron beam at 100 keV, and a low energy beam transport (LEBT) line required to match the beam for the RFQ injection. The proposed design for the LEBT is based on a dual solenoids focusing scheme. In order to takes into account the space charge compensation of the beam induced by the ionisation of the residual gas, a 3D particle-in-cell code (SOLMAXP) has been developed for the beam dynamics calculations. The LEBT parameters have been optimized in order to maximize the beam transmission through the RFQ. The final LEBT design, as well as the simulation results, are presented. |
||
TH5PFP005 | Optimization Results of Beam Dynamics Simulations for the Superconducting HWR IFMIF Linac | 3193 |
|
||
The 250 mA, 40 MeV cw deuteron beam required for the International Fusion Materials Irradiation Facility (IFMIF) will be provided by two 125 mA linacs. In order to accelerate the beam from 5 MeV to 40 MeV, a superconducting linac, housed in four cryomodules, is proposed. The design is based on two beta families (beta=0.094 and beta=0.166) of half-wave resonators (HWR) at 175 MHz. The transverse focusing is achieved using one solenoid coil per lattice. This paper presents the extensive multi-particle beam dynamics simulations that have been performed to adapt the beam along the SC-HWR structure in such a high space charge regime. As one of the constraints of the IFMIF linac is hands-on maintenance, specific optimizations have been done to minimize the beam occupancy in the line (halo). A Monte Carlo error analysis has also been carried out to study the effects of misalignments or field imperfections. |
||
TH5PFP006 | IFMIF-EVEDA Accelerators: Strategies and Choices for Optics and Beam Measurements | 3196 |
|
||
The two IFMIF (International Fusion Materials Irradiation Facility) accelerators will each have to deliver 5 MW of deuteron beam at 40 MeV. To validate the conceptual design, a prototype, consisting of one 9 MeV accelerator called EVEDA (Engineering Validation and Engineering Design Activity), is being constructed. Beam dynamics studies are entering the final phase for the whole EVEDA and for the accelerating part of IFMIF. The challenging point is to be able to reconcile the very strong beam power and the hands-on maintenance constraint. At energies up to 5 MeV, difficulties are to reach the requested intensity under a very strong space charge / compensation regime. Over 5 MeV, difficulties are to make sure that beam losses can be maintained below 10-6 of the beam intensity. This paper will report the strategies and choices adopted in the optics design and the beam measurement proposal. |