A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Natsui, T.

Paper Title Page
TU6PFP016 Pinpoint keV X-Ray Imaging for X-Ray Drug Delivery System 1328
 
  • M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
  • R. Kuroda, K. Yamada
    AIST, Tsukuba, Ibaraki
  • K. Mizuno, A. Mori, T. Natsui, H. Taguchi, J.D. Trono
    University of Tokyo, Tokyo
  • N. Yusa
    Tohoku University, Graduate School of Engineering, Sendai
 
 

In X-ray Drug Delivery System, anticancer drugs containing Pt, such as cisplatin and dachplatin, and Au colloid contrast agent are surrounded by polymers (micelle, PEG (polyethylene glycol), etc.).Ttheir sizes are controlled to be 20-100 nm. Since holes of capillary to organ are as large as 100 nm in only cancer, those large particles can be accumulated in cancer effectively. That is called as EPR (Extended Penetration and Retention effect). We have observed the distribution of Pt of dachplatin-micelle in cancer of mouse’s pancreas by X-ray fluorescence analysis using 10 μm pinpoint 15 keV X-ray by SPring8. Further, in-vitro- and in-vivo-experiments of Au colloid PEG are under way. It is expected to be used as contrast agent for dynamic tracking treatment for moving cancer. Imaging properties for polychromatic X-rays from X-ray tube and monochromatic Compton source are numerically analyzed and discussed. We continue to analyze radiation enhancement by Auger electrons and successive characteristic X-rays and its toxic effect to cancer.

 
TU6PFP003 Application of Portable 950 keV X-Band Linac X-Ray Source to Condition Based Maintenance for Pump-Impeller 1293
 
  • T. Yamamoto, T. Natsui
    UTNL, Ibaraki
  • E. Hashimoto, S. Hirai, K. Lee, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
  • J. Kusano, N. Nakamura, M. Yamamoto
    A, Kawasaki, Kanagawa
  • E. Tanabe
    AET Japan, Inc., Kawasaki-City
 
 

We are developing X-ray nondestructive testing (NDT) system using with portable X-band linac. This system uses 9.4 GHz X-band linac and 250 kW magnetron. Our system energy is 950 keV for Japanese regulation. Therefore we can use it on-site using local radiation protection. We measured electron beam and X-ray. We have started X-ray imaging test. We will use this system for condition based maintenance of pump-impeller at nuclear plants. The linac based X-ray source can generate pulsed X-ray. Therefore we can get still images without stopping rotation when x-ray repetition rate synchronizes impeller's rotaion rate. We are successfull in proof of principle using a simple fan and a synchronized circuit. We prepare real-time imaging for conventional pump. In this paper, we will explain the detail of this system and expermental results.