Paper | Title | Page |
---|---|---|
TU6PFP003 | Application of Portable 950 keV X-Band Linac X-Ray Source to Condition Based Maintenance for Pump-Impeller | 1293 |
|
||
We are developing X-ray nondestructive testing (NDT) system using with portable X-band linac. This system uses 9.4 GHz X-band linac and 250 kW magnetron. Our system energy is 950 keV for Japanese regulation. Therefore we can use it on-site using local radiation protection. We measured electron beam and X-ray. We have started X-ray imaging test. We will use this system for condition based maintenance of pump-impeller at nuclear plants. The linac based X-ray source can generate pulsed X-ray. Therefore we can get still images without stopping rotation when x-ray repetition rate synchronizes impeller's rotaion rate. We are successfull in proof of principle using a simple fan and a synchronized circuit. We prepare real-time imaging for conventional pump. In this paper, we will explain the detail of this system and expermental results. |
||
MO6PFP090 | Phase Shifter Prototype with Laminated Permalloy Yokes for a Polarization-Controlled Undulator | 342 |
|
||
A 27-m polarization-controlled undulator that consists of four horizontal and four vertical figure-8 undulator segments and seven phase shifters will be installed at SPring-8 as the most highly brilliant soft x-ray source for the material science beamline of the University of Tokyo. Each phase shifter controls the radiation phase between undulator segments by giving a bump orbit to the electron beam with its magnetic field to generate horizontal, vertical and circular polarization states. High reproducibility and stability of the phase control and fast helicity switching of the circular polarization radiation are required for the phase shifter. We designed and fabricated a phase shifter prototype to satisfy these requirements. The phase shifter prototype consists of three H-type dipole magnets and the yokes are made of 0.1-mm-thick permalloy laminations united and insulated by varnish. Various field measurements of the prototype were performed to evaluate the performance. In this paper, we will present the phase shifter prototype for the 27-m polarization-controlled undulator and its performance. |
||
TU5RFP084 | Beam Optics Study for the Compact ERL in Japan | 1284 |
|
||
A compact ERL (energy recovery linac) is planned in Japan in order to demonstrate excellent ERL performances and to test key components such as low-emittance photocathode gun and superconducting RF cavity. We studied and optimized the compact ERL optics (except the injector part) to generate a subpico-second bunch in bunch compression mode and to preserve the beam emittance in normal and low-emittance mode. As a result, we could obtain a very short bunch of about 50 fs with a charge of 77 pC in bunch compression mode and almost keep the normalized emittance of 0.1 mm mrad with a charge of 7.7 pC in low-emittance mode. We also designed it to achieve efficient energy recovery at the superconducting RF cavities and to transport the beam to the dump section without serious loss. The design study of the compact ERL optics was carried out with the simulation code Elegant, including CSR(coherent synchrotron radiation) effects. In this paper, we will present the results of the beam optics study for the compact ERL. |
||
TU6RFP045 | Stored Beam Stability during Pulsed Sextupole Injection at the Photon Factory Storage Ring | 1647 |
|
||
We successfully demonstrated a new beam injection method using a single pulsed sextupole magnet (PSM). The PSM has a parabolic-shaped magnetic field, which is expected to provide an effective kick to the injected beam without little effects on the stored beam. We installed the PSM injection system at the Photon Factory storage ring (PF-ring) and succeeded in injecting the beam into PF-ring and storing the current up to 450 mA. This is the first demonstration of the PSM beam injection in electron storage rings. We also tested top-up injection and confirmed that dipole oscillation of the stored beam was sufficiently reduced compared with that generated by the conventional injection system. In this conference, we will present the experimental results and the advantages of the PSM beam injection. |
||
TU5RFP081 | Status of the Energy Recovery Linac Project in Japan | 1278 |
|
||
Future synchrotron light source project using an energy recovery linac (ERL) is under proposal at the High Energy Accelerator Research Organization (KEK) in collaboration with several Japanese institutes such as the JAEA and the ISSP. We are on the way to develop such key technologies as the super-brilliant DC photo-injector and superconducting cavities that are suitable for both CW and high-current operations. We are also promoting the construction of the Compact ERL for demonstrating such key technologies. We report the latest status of our project, including update results from our photo-injector and from both superconducting cavities for the injector and the main linac, as well as the progress in the design and preparations for constructing the Compact ERL. |