Paper | Title | Page |
---|---|---|
TU5PFP102 | RF System for SESAME | 1078 |
|
||
Funding: SESAME (Synchrotron light-source for Experimental Science and Applications in the Middle-East) Allan, Jordan The SESAME (Synchrotron light source for Experimental Science and Applications in the Middle-East) accelerator consists of a 22MeV Microtron, an 800MeV booster synchrotron and a 2.5GeV storage ring. Each accelerator has its own RF system. The Microtron RF frequency is 3GHz generated by a 2MW pulsed Magnetron while the booster and storage ring have a common 500MHz CW RF source. The Booster RF system consists of a DORIS cavity fed by a 2kW CW solid-state RF amplifier but the storage ring (SR) RF system has been designed based on four 500 MHz plants, each comprising a normal conducting (NC) single-cell cavity , powered with 140 kW (CW) by two combined 80kW IOTs to have maximum possible RF power in the cavity via a WR1800 waveguide line. In the initial phase, it has been decided to start with two ELETTRA type cavities and in final phase, four cavities will be accommodated in one straight section in the storage ring to have nominal energy and current in the machine. This paper presents status of installed Microtron RF system and modified booster RF system from BESSY I, as well as designed SESAME storage ring high power RF system and low level electronics. |
||
WE4RAC04 | Power Supply System for SESAME Booster | 1944 |
|
||
The SESAME booster, with a circumference of 38 m, has several bending magnets, focussing quadrupoles and defocussing quadrupoles and also the injection and extraction septums and kickers. There wil be one ramping power converter which supplies a series of 12 dipole magnets. Also 12 focussing magnets family and 6 defocussing magnets family are supplied separately with two ramping power converters. Technical issues of all the ramping and pulsed power supplies needed for the SESAME booster are disussed in this paper. |
||
WE5RFP022 | Status of SESAME Project | 2315 |
|
||
SESAME is a 3rd generation synchrotron light source facility under construction in Allan, Jordan, 30 km North-West of Amman. SESAME consists of a 2.5 GeV storage ring, a 22.5 MeV Microtron and an 800 MeV Booster. The Microtron was installed at its final position and its subsystems have been successfully tested. The commissioning with beam of the Microtron will start in March 2009. The installation of the Booster is expected to take place in summer 2009. Most of the storage ring subsystems are ready for call for tender. The progress of SESAME project including beamlines status will be reported in this paper. |
||
WE5RFP021 | Operation and Performance Upgrade of the SOLEIL Storage Ring | 2312 |
|
||
After two years of operation, the SOLEIL 3rd generation synchrotron light source is delivering photons to 20 beamlines with a current of 250mA in multibunch or hybrid modes, and 60 mA in 8 bunch mode. The radiation control of the beamline hutches is performed at 300 mA, but recently a 455mA current was stored during machine tests following the installation of the second RF cryomodule. It is foreseen to reach the maximum current of 500mA in the early 2009 and to operate in top-up mode from then on. The new transverse feedback loop has enabled to improve the performance of the single bunch and multibunch beams. The beam position stability is in the range of few micrometers thanks to the efficiency of the fast orbit feedback. Fifteen insertion devices are now installed in the storage ring, ten others are under construction, and a cryogenic undulator is under development. A big effort is being taken in order to compensate the effects of these insertion devices on the machine performance. The good operation performance achieved in 2007 (first year) has been improved in 2008 during which ~4 000 hours will have been delivered to the users with a 95.5% availability and a 30 hours MTBF. |
||
WE5RFP080 | Development and Installation of Insertion Devices at SOLEIL | 2453 |
|
||
SOLEIL storage ring presents a very high fraction of the total circumference dedicated to accommodate insertion devices. Over the presently planned 25 insertion devices presenting a large variety of systems, 15 have been already installed and commissioned by the end of 2008. The UV-VUV region is covered with electromagnetic devices (one HU640 and 3 HU256), offering tuneable polarisations. An electromagnet/permanent magnet undulator using copper sheets as coils for fast switching of the helicity is under construction. 13 APPLE-II types undulators, with period ranging from 80 down to 36 mm, provide photons in the 0.1-10 keV region, some of them featuring tapering or quasi-periodicity. 5 U20 in-vacuum undulators cover the 3-30 keV range whereas an in-vacuum wiggler, with magnetic forces compensation via adequate springs is designed to cover the 10-50 keV spectral domain. R&D on cryogenic in-vacuum undulator has also been launched. A magnetic chicane using permanent magnet dipoles has also been designed in order to accommodate two canted undulators on the same straight section. The processes for optimizing the insertion devices and their achieved performances will be described. |
||
TH6PFP075 | Linear and Non-Linear Optics Measurements at SOLEIL | 3877 |
|
||
The successful correction of non-linear resonances in DIAMOND using the BPM turn-by-turn data has motivated testing this approach in SOLEIL in collaboration with CERN. We report on the first experiences towards the correction of non-linear resonances in SOLEIL. |
||
TH6PFP095 | Linear and Non-Linear Model Optimisation for SOLEIL Storage Ring | 3931 |
|
||
SOLEIL, the French 2.75 GeV third generation synchrotron light source, was commissioned 3 years ago. Thanks to beam-based measurements, the theoretical model of the storage ring lattice model has been improved. First, the quadrupole lengths in the hard edge model were finely tuned to get good agreement with the experimental measurements of betatron tunes for different optics. Second, the non-linear model was modified to better fit with beam-based on-momentum frequency map measurements. A thick sextupole model has been introduced in addition to the non-linear effect of the fringe field in quadrupoles. Simulated and measured tune shifts with transverse amplitudes are then compared. Finally a coupled machine model has been built thanks to crosstalk closed orbit acquisitions. A comparison with another model which is based on turn by turn beam position monitor data is presented. As a validation check, the coupling effect of the 10 m long HU640 undulator is evaluated through these coupled models. |
||
TH6REP080 | Beam Position Orbit Stability Improvement at SOLEIL | 4141 |
|
||
SOLEIL is the French 2.75 GeV high brilliance third generation synchrotron light source delivering photons to beam-lines since January 2007. Reaching micrometer to sub-micrometer level stability for the photon beams is then necessary but very challenging. Since September 2008, a fast orbit feedback has been running in daily operation. The performances of the system will be presented together with comparison with the ones previously achieved with the slow orbit feedback system. Status of the interaction of both feedback systems will be discussed. Moreover new X-BPMs have been installed on dipole and undulator based beam-lines; a total number of 9 vibration sensors (velocimeters) are now installed in the storage ring tunnel, on the experimental slab and outside the building in order to help to locate the different noise sources. Detailed results will be presented and debated. |