A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Moog, E.R.

Paper Title Page
MO6PFP080 Circular Polarizing Quasi-Periodic Undulator 318
 
  • M.S. Jaski, E.R. Moog, S. Sasaki
    ANL, Argonne
 
 

Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC02-06CH11357.


Investigation into a circular polarizing quasi-periodic undulator is presented here. Electromagnets are used to generate the vertical field. Permanent magnets are used to generate the horizontal field. Calculated maximum effective vertical and horizontal magnetic fields on the undulator axis higher than 8.5 kGauss are achieved at a 10.5-mm gap for a 9-cm-period undulator. Fields of this magnitude are difficult to achieve in purely electromagnetic devices. Switching the sign of the current for the vertical field electromagnets allows for right- or left-handed circular polarization. A laminated core can be introduced to allow for fast helicity switching in order to utilize lock-in detection techniques. Quasi-periodicity can be introduced in the vertical electromagnet field by reducing the current at the quasi-periodic poles and can be turned on, off, or somewhere in between. Quasi-periodicity can be introduced in the horizontal permanent magnet field by inserting weakened magnets at the quasi-periodic poles. Since it is built into the magnet structure, this quasi-periodicity cannot be turned off.

 
MO6PFP078 Status of R&D on a Superconducting Undulator for the APS 313
 
  • Y. Ivanyushenkov, K.D. Boerste, T.W. Buffington, C.L. Doose, Q.B. Hasse, M.S. Jaski, M. Kasa, S.H. Kim, R. Kustom, E.R. Moog, D.L. Peters, E. Trakhtenberg, I. Vasserman
    ANL, Argonne
  • A.V. Makarov
    Fermilab, Batavia
 
 

Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


An extensive R&D program is underway at the Advanced Photon Source (APS) with the aim of developing a technology capable of building a 2.4-m-long superconducting planar undulator for APS users. The initial phase of the project concentrates on using a NbTi superconductor and includes magnetic modeling, development of manufacturing techniques for the undulator magnet, and design and test of short prototypes. The current status of the R&D phase of the project is described in this paper.