A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Montag, C.

Paper Title Page
MO4RAC04 First Polarized Proton Collisions at a Beam Energy of 250 GeV in RHIC 91
 
  • M. Bai, L. A. Ahrens, J.G. Alessi, G. Atonian, A. Bazilevsky, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, G. Ganetis, C.J. Gardner, R.L. Gill, J.W. Glenn, Y. Hao, T. Hayes, H. Huang, R.L. Hulsart, A. Kayran, J.S. Laster, R.C. Lee, A.U. Luccio, Y. Luo, W.W. MacKay, Y. Makdisi, G.J. Marr, A. Marusic, G.T. McIntyre, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, B. Morozov, J. Morris, P. Oddo, B. Oerter, F.C. Pilat, V. Ptitsyn, D. Raparia, G. Robert-Demolaize, T. Roser, T. Russo, T. Satogata, V. Schoefer, K. Smith, D. Svirida, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


After having provided collisions of polarized protons at a beam energy of 100 GeV since 2001, the Relativistic Heavy Ion Collider~(RHIC) at BNL reached its design energy of polarized proton collision at 250 GeV. With the help of the two full Siberian snakes in each ring as well as careful orbit correction and working point control, polarization was preserved during acceleration from injection to 250~GeV. During the course of the Physics data taking, the spin rotators on either side of the experiments of STAR and PHENIX were set up to provide collisions with longitudinal polarization at both experiments. Various techniques to increase luminosity like further beta star squeeze and RF system upgrades as well as gymnastics to shorten the bunch length at store were also explored during the run. This paper reports the performance of the run as well as the plan for future performance improvement in RHIC.

 

slides icon

Slides

 
WE3PBI03 LHC Beam-Beam Compensation Studies at RHIC 1899
 
  • W. Fischer, R. Calaga, R. De Maria, Y. Luo, N. Milas, C. Montag, G. Robert-Demolaize
    BNL, Upton, Long Island, New York
  • H.J. Kim, T. Sen
    Fermilab, Batavia
 
 

Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH1-886


Long-range and head-on beam-beam effects are expected to limit the LHC performance with design parameters. To mitigate long-range effects current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. To reduce the head-on beam-beam effect electron lenses were proposed for both the LHC and RHIC. We present the experimental long-range beam-beam program and report on head-on compensations studies at RHIC, which are primarily based on simulations.

 

slides icon

Slides

 
WE6PFP007 Dynamic Aperture Evaluation for the RHIC 2009 Polarized Proton Runs 2492
 
  • Y. Luo, M. Bai, J. Beebe-Wang, W. Fischer, C. Montag, G. Robert-Demolaize, T. Satogata, S. Tepikian, D. Trbojevic
    BNL, Upton, Long Island, New York
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


In preparation for the RHIC polarized proton run 2009, simulations were carried out to evaluate the million turn dynamic apertures for different beta*s at the proposed beam energies of 100 GeV and 250 GeV. One goal of this study is to find out the best beta* for this run. We also evaluated the effects of the second order chromaticity correction. The second order chromaticties can be corrected with the MAD8 Harmon module or by correcting the horizontal and vertical half-integer resonance driving terms.

 
WE6PFP059 Interaction Region Design for a RHIC-Based Medium-Energy Electron-Ion Collider 2634
 
  • C. Montag, J. Beebe-Wang, B. Parker, D. Trbojevic
    BNL, Upton, Long Island, New York
 
 

As first step in a staged approach towards a RHIC-based electron-ion collider, installation of a 4 GeV energy-recovery linac in one of the RHIC interaction regions is currently under investigation. To minimize costs, the interaction region of this collider has to utilize the present RHIC magnets for focussing of the high-energy ion beam. Meanwhile, electron low-beta focussing needs to be added in the limited space available between the existing separator dipoles. We discuss the challenges we are facing and present the current design status of this e-A interaction region.

 
WE6PFP060 eRHIC Ring-Ring Design with Head-on Beam-Beam Compensation 2637
 
  • C. Montag, M. Blaskiewicz, W. Fischer, W.W. MacKay, E. Pozdeyev
    BNL, Upton, Long Island, New York
 
 

The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.

 
WE6PFP063 Concept for a Polarized Electron-Nucleon Collider Utilizing the HESR Storage Ring at GSI/FAIR 2646
 
  • A. Lehrach
    FZJ, Jülich
  • K. Aulenbacher, A. Jankowiak
    IKP, Mainz
  • W. Hillert
    ELSA, Bonn
  • C. Montag
    BNL, Upton, Long Island, New York
  • T. Weis
    DELTA, Dortmund
 
 

The feasibility of a polarized Electron-Nucleon Collider (ENC) with a center-of-mass energy up to 13.5 GeV for luminosities above 2·1032 cm-2 s-1 is presently under consideration. The proposed concept integrates the planned 14 GeV High-Energy Storage Ring (HESR) for protons/deuterons and an additional 3 GeV electron ring. Calculations of cooled beam equilibria including intra-beam scattering and beam-beam interaction have been performed utilizing the BetaCool code. A special design of the interaction region is required to realize back-to-back operation of the HESR storage ring together with the elaborated collider mode. For polarized proton/deuteron beams additional equipment has to be implemented in several machines of the acceleration chain and the HESR to preserve the beam’s polarization. A scheme for polarized electrons is still under investigation. In this presentation the required modifications and extensions of the HESR accelerator facility at the future International Facility for Antiproton and Ion Research (FAIR) are discussed and the proposed concept is presented.

 
WE6PFP062 MeRHIC – Staging Approach to eRHIC 2643
 
  • V. Ptitsyn, J. Beebe-Wang, I. Ben-Zvi, A. Burrill, R. Calaga, X. Chang, A.V. Fedotov, H. Hahn, L.R. Hammons, Y. Hao, A. Kayran, V. Litvinenko, G.J. Mahler, C. Montag, B. Parker, A. Pendzick, S.R. Plate, E. Pozdeyev, T. Roser, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang
    BNL, Upton, Long Island, New York
  • E. Tsentalovich
    MIT, Middleton, Massachusetts
 
 

Funding: Work performed under US DOE contract DE-AC02-98CH1-886


Design of a medium energy electron-ion collider (MEeIC) is under development at Collider-Accelerator Department, BNL. The design envisions a construction of 4 GeV electron accelerator in a local area inside the RHIC tunnel. The electrons will be produced by a polarized electron source and accelerated in the energy recovery linac. Collisions of the electron beam with 100 GeV/u heavy ions or with 250 GeV polarized protons will be arranged in the existing IP2 interaction region of RHIC. The luminosity of electron-proton collisions at 1032 cm-2 s-1 level will be achieved with 40 mA CW electron current with presently available parameters of the proton beam. Efficient cooling of proton beam at the collision energy may bring the luminosity to 1033 cm-2 s-1 level. The important feature of the MEeIC is that it would serve as first stage of eRHIC, a future electron-ion collider at BNL with both higher luminosity and energy reach. The majority of the MEeIC accelerator components will be used for eRHIC.

 
FR1PBI01 RHIC Progress and Future 4216
 
  • C. Montag
    BNL, Upton, Long Island, New York
 
 

The talk reviews the RHIC performance, including the unprecedented manipulations of polarized beams and the recent low energy operations. Achievements and limiting factors of RHIC operation are discussed, e.g. intrabeam scattering, electron cloud, beam-beam effects, magnet vibrations, and the efficiency of novel countermeasures such as bunched beam stochastic cooling, beam conditioning and chamber coatings. The future upgrade plans and the pertinent R&D program will also be presented.

 

slides icon

Slides