Paper | Title | Page |
---|---|---|
MO6RFP067 | Beam Dynamics Simulation for the Compact ERL Injector | 521 |
|
||
The compact ERL, cERL, is a project to test an energy recovery linac (ERL) with 60 MeV and 100 mA electron beam to generate synchrotron radiation with smaller emittance and shorter pulse length. The design work of the cERL injector has been carried out using a space charge simulation code. The injector consists of 500 kV photo cathode DC gun, two solenoid magnets, buncher cavity, three super conducting RF cavities and merger section to return pass. It generates an electron beam with -77 pC bunch charge and 1.3 GHz repetition rate. Our target value of emittance is less than 1 mm mrad with the bunch length of 1 mm at the exit of the injector. The parameter optimization of the injector using the multi objected method has been carried out to obtain the minimum emittance. The simulation results will be presented in detail. |
||
WE6PFP110 | Pulse-to-Pulse Switching Injection to Three Rings of Different Energies from a Single Electron Linac at KEK | 2769 |
|
||
The e+/e- injector LINAC in KEK usually successively injects into four rings, which are Low Energy Ring (LER) of KEKB (3.5GeV/e+), High Energy Ring (HER) of KEKB (8.0GeV/e-), Photon Factory (PF) (2.5GeV/e-) and Advanced Ring for pulse X-rays (PF-AR) (3.0GeV/e-). While LINAC continuously injects into LER and HER alternatively every about five minutes, keeping both of KEKB rings almost their full operating currents. It takes about one minute to switch beam mode of LINAC. PF and PF-AR are injected a few times in a day. Time for PF or PF-AR including mode-switch had taken about 20 minutes for each other. For PF injection, the switching time was shortened in 2005 and the occupancy time is about 5 minutes. In 2008, we succeeded to make the switching time shorter, 2 seconds for HER/LER, and Pulse-to-pulse alternatively injection for PF/HER using an event system. Especially for KEKB, the short switching time is contributed to provide high currents and to improve luminosity at which beam lives are too short to keep the high currents. In 2009, we have a plan to inject also for LER/HER pulse-to-pulse alternatively. |
||
TU5RFP031 | Recent Progress of the Operation at PF-Ring and PF-AR | 1165 |
|
||
Two synchrotron light sources of the Photon Factory storage ring (PF-ring) and the Photon Factory advanced ring (PF-AR) have been stably operated at KEK. PF-ring covers the photon-energy range from VUV to hard X-ray using a 2.5 GeV (sometimes 3.0 GeV) electron beam. PF-AR is mostly operated in a single-bunch mode of 6.5GeV to provide pulsed hard X-rays. Recently, the operation has progressed to realize a so-called top-up injection at PF-ring. In a single-bunch mode, the continuous injection to preserve a constant beam current of 51 mA has been carried out since February 2007. In addition, the injection with continuing the experiments has been successfully operated in a multi-bunch mode since October 2008. At PF-AR, sputter ion pumps have been extensively reinforced to prolong the beam lifetime and to reduce the frequency of sudden lifetime drops by substituting for distributed ion pumps, which are considered as one of the dust sources. In this conference, we present the recent progress of the operation at PF-ring and PF-AR including machine developments. |
||
TU5RFP081 | Status of the Energy Recovery Linac Project in Japan | 1278 |
|
||
Future synchrotron light source project using an energy recovery linac (ERL) is under proposal at the High Energy Accelerator Research Organization (KEK) in collaboration with several Japanese institutes such as the JAEA and the ISSP. We are on the way to develop such key technologies as the super-brilliant DC photo-injector and superconducting cavities that are suitable for both CW and high-current operations. We are also promoting the construction of the Compact ERL for demonstrating such key technologies. We report the latest status of our project, including update results from our photo-injector and from both superconducting cavities for the injector and the main linac, as well as the progress in the design and preparations for constructing the Compact ERL. |
||
TH5RFP048 | Performance of Coded Aperture X-Ray Optics with Low Emittance Beam at CesrTA | 3561 |
|
||
Funding: Work supported in part by the US-Japan Cooperation Program We are working on the development of a high-speed x-ray beam profile monitor for high-resolution and fast response for beam profile measurements to be used at CesrTA and SuperKEKB*. The optics for the monitor are based on a technique borrowed from x-ray astronomy, coded-aperture imaging, which should permit broad-spectrum, low-distortion measurements to maximize the observable photon flux per bunch. Coupled with a high-speed digitizer system, the goal is to make turn-by-turn, bunch-by-bunch beam profile measurements. Following initial tests with a low-resolution mask at large beam sizes (vertical size ~200 um), a high-resolution mask has been made for use with low-emittance beams (vertical size ~10 um) at CesrTA. The first performance results of the high-resolution mask on the low-emittance CesrTA beam are presented. *J.W. Flanagan et al., Proc. EPAC08, Genoa, {10}29 (2008). |
||
TH6REP033 | Interferometer Beam Size Measurements in SPEAR3 | 4018 |
|
||
Funding: Work sponsored by U.S. Department of Energy Contract DE-AC03-76SF00515 and Office of Basic Energy Sciences, Division of Chemical Sciences. A two-slit interferometer has been installed in the SPEAR3 diagnostic beam line to measure vertical beam size at a dipole source point. The diagnostic beam line accepts unfocused, visible light in a 3.5 x 6.0 mrad aperture so that at the slit location 17 m from the source, the vertical extent of the beam is 100mm. For typical source sizes of sigy~15 um (0.1% emittance coupling) a slit separation of 80 mm produces fringe visibility of order V=0.5. Hence a significant plot of fringe visibility vs. slit separation can be generated to infer source size via Fourier transformation. In this paper we report on the interferometer construction, beam size measurement and potential deficiencies of the system, and compare with theoretical results. |