Paper | Title | Page |
---|---|---|
MO6RFP090 | The TRIUMF/VECC Collaboration on a 10 MeV/30 kW Electron Injector | 577 |
|
||
TRIUMF (Canada) and VECC (India) are planning to each build a 1.3GHz 50MeV/500kW superconducting electron linac as a driver for producing radioactive ion beams through photo-fission. The two institutes have launched a collaboration with the initial goal to design, build and test a 5-10MeV superconducting injector cryomodule capable of accelerating up to 10mA. A testing area is being set-up at TRIUMF to house the electron gun, rf buncher, injector cryomodule, diagnostic station and beam-dump for beam studies. The project will test all critical elements of the final linac; beam halo generation, HOM excitation, LLRF and rf beam loading and cavity and cryomodule design/performance. The scope and status of the project will be described. |
||
TU4PBC04 | Production and Testing Results of Superconducting Cavities for ISAC-II High Beta Section | 786 |
|
||
The ISAC-II heavy ion linear accelerator has been in operation at TRIUMF since 2006. The high beta section of the accelerator, consisting of twenty cavities with optimum beta=0.11, is currently under production and is scheduled for completion in 2009. The cavities are superconducting bulk Niobium two-gap quarter-wave resonators with a frequency of 141 MHz, providing, as a design goal, a voltage gain of Veff=1.08 MV at 7 W power dissipation. Production of the cavities is with a Canadian company, PAVAC Industries of Richmond, B.C. after two prototype cavities were developed, produced and successfully tested. Cavity production details and test results will be presented and discussed. |
||
|
||
WE4PBC04 | An Electron Linac Photo-Fission Driver for the Rare Isotope Program at TRIUMF | 1958 |
|
||
A 0.5 megawatt electron linear accelerator is being designed at TRIUMF in support of its expanding rare isotope program, which targets nuclear structure and astrophysics studies as well as material science. The first stage of the project, a 25 MeV, 5 mA, cw linac matching the isotope production target power-handling capability in the next five-year plan, is planned to be completed in 2013. The injector cryomodule development, which is being fast tracked, is the subject of a scientific collaboration between TRIUMF and the VECC laboratory in Kolkata, India. The paper gives an overview of the accelerator design progress. |
||
|