A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Migliorati, M.

Paper Title Page
TU5RFP063 Laser Heater and Coherent Synchrotron Radiation: Analytical and Numerical Results 1229
 
  • G. Dattoli
    ENEA C.R. Frascati, Frascati (Roma)
  • M. Migliorati
    INFN/LNF, Frascati (Roma)
  • A. Schiavi
    Rome University La Sapienza, Roma
 
 

We develop some considerations allowing the possibility of deriving the conditions under which laser heater devices may suppress the Coherent Synchrotron Instability (CSRI) without creating any prejudice to the use of the beam for FEL SASE or FEL oscillator operation. We discuss the problem using either numerical and analytical methods. The analytical part is aimed at evaluating the amount of laser power, necessary to suppress the instability. We use methods already developed within the context of FEL-storage rings beam dynamics, with particular reference to the interplay between FEL and Saw Tooth Instability. The numerical method employs a procedure based on the integration of the Liouville equation, describing the coupled interaction between e-beam and wake-fields, producing the instability, and the laser producing the heating. Particular attention is devoted to the competition between instability and heating. The comparison between numerical and analytical results is discussed too and the agreement is found to be satisfactory.

 
MO6RFP071 Velocity Bunching Experiments at SPARC 533
 
  • M. Ferrario, D. Alesini, M. Bellaveglia, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, L. Cultrera, G. Di Pirro, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, C. Marrelli, M. Migliorati, A. Mostacci, E. Pace, L. Palumbo, B. Spataro, C. Vaccarezza, C. Vicario
    INFN/LNF, Frascati (Roma)
  • G. Andonian, G. Marcus, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • A. Bacci, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano
  • A. Cianchi, B. Marchetti
    INFN-Roma II, Roma
  • L. Giannessi, M. Labat, M. Quattromini, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • M. Rezvani Jalal
    University of Tehran, Tehran
  • M. Serluca
    INFN-Roma, Roma
 
 

One of the main goals of the SPARC high brightness photoinjector is the experimental demonstration of the emittance compensation process while compressing the beam with the velocity bunching technique, also named RF compressor. For this reason, the first two S-band travelling wave accelerating structures downstream of the RF gun are embedded in a long solenoid, in order to control the space charge induced emittace oscillations during the compression process. An RF deflecting cavity placed at the exit of the third accelerating structure allows bunch length measurements with a resolution of 50 μm. During the current SPARC run a parametric experimental study of the velocity bunching technique has been performed. The beam bunch length and projected emittance have been measured at 120 MeV as a function of the injection phase in the first linac, and for different solenoid field values. In this paper we describe the experimental layout and the results obtained thus far. Comparisons with simulations are also reported.

 
FR5RFP049 Coupling Impedance of the CERN SPS Beam Position Monitors 4646
 
  • B. Salvant
    EPFL, Lausanne
  • D. Alesini, M. Migliorati, B. Spataro
    INFN/LNF, Frascati (Roma)
  • G. Arduini, C. Boccard, F. Caspers, A. Grudiev, O.R. Jones, E. Métral, G. Rumolo, B. Salvant, C. Zannini
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
  • F. Roncarolo
    UMAN, Manchester
 
 

A detailed knowledge of the beam coupling impedance of the CERN Super Proton Synchrotron (SPS) is required in order to operate this machine with a higher intensity for the foreseen Large Hadron Collider (LHC) luminosity upgrade. A large number of Beam Position Monitors (BPM) is currently installed in the SPS, and this is why their contribution to the SPS impedance has to be assessed. This paper focuses on electromagnetic simulations and bench measurements of the longitudinal and transverse impedance generated by the horizontal and vertical BPMs installed in the SPS machine.

 
TH4PBC05 Recent Results of the SPARC FEL Experiments 3178
 
  • M. Ferrario, D. Alesini, M. Bellaveglia, M. Benfatto, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, A. Marcelli, A. Marinelli, C. Marrelli, M. Migliorati, A. Mostacci, E. Pace, L. Palumbo, L. Pellegrino, R. Ricci, U. Rotundo, C. Sanelli, F. Sgamma, B. Spataro, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, I. Boscolo, F. Broggi, F. Castelli, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano
  • M. Bougeard, B. Carré, D. Garzella, M. Labat, G. Lambert, H. Merdji, P. Salières, O. Tchebakoff
    CEA, Gif-sur-Yvette
  • L. Catani, A. Cianchi, B. Marchetti
    INFN-Roma II, Roma
  • F. Ciocci, G. Dattoli, M. Del Franco, A. Dipace, A. Doria, G.P. Gallerano, L. Giannessi, E. Giovenale, G.L. Orlandi, S. Pagnutti, A. Petralia, M. Quattromini, C. Ronsivalle, E. Sabia, I.P. Spassovsky, V. Surrenti
    ENEA C.R. Frascati, Frascati (Roma)
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • M. Mattioli, M. Serluca
    INFN-Roma, Roma
  • M. Rezvani Jalal
    University of Tehran, Tehran
  • J.B. Rosenzweig
    UCLA, Los Angeles, California
 
 

The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive 500 nm FEL experiments in SASE, Seeding and Single Spike configurations. The SPARC photoinjector is also the test facility for the recently approved VUV FEL project named SPARX. The second stage of the commissioning, that is currently underway, foresees a detailed analysis of the beam matching with the linac in order to confirm the theoretically prediction of emittance compensation based on the “invariant envelope” matching , the demonstration of the “velocity bunching” technique in the linac and the characterisation of the spontaneous and stimulated radiation in the SPARC undulators. In this paper we report the experimental results obtained so far. The possible future energy upgrade of the SPARC facility to produce UV radiation and its possible applications will also be discussed.

 

slides icon

Slides

 
MO6RFP062 Microbunching Studies for SPARX Photoinjector 506
 
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • M. Ferrario, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  • M. Migliorati
    Rome University La Sapienza, Roma
  • M. Venturini
    LBNL, Berkeley, California
 
 

The SPARX X-FEL accelerator will be the first FEL facility to operate with a hybrid (RF plus magnetic chicane) compression scheme. Numerical studies of propagation of beam density modulations stemming from photogun laser, through the photoinjector operating under velocity bunching conditions have been carried out. A semi-analytical model for the linear gain in a RF compressor is also being developed and some preliminary results are presented.

 
TU5RFP077 Microbunching Instability Modeling in the SPARX Configurations 1266
 
  • C. Vaccarezza, M. Ferrario, A. Marinelli
    INFN/LNF, Frascati (Roma)
  • L. Giannessi, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • M. Migliorati
    Rome University La Sapienza, Roma
  • M. Venturini
    LBNL, Berkeley, California
 
 

The modeling of the microbunching instability has been carried out for the SPARX FEL accelerator, two configurations have been considered and compared: hybrid compression scheme (velocity bunching plus magnetic compressor) and purely magnetic. The effectiveness of a laser heather in reducing this instability drawbacks on the electron beam quality has also been exploited. Analytical predictions and start to end simulation results are reported in this paper.