Paper | Title | Page |
---|---|---|
WE5PFP050 | Preparations for Assembly of the International ERL Cryomodule at Daresbury Laboratory | 2113 |
|
||
The collaborative development of an optimised cavity/cryomodule solution for application on ERL facilities, has now progressed to final assembly and testing of the cavity string components and their subsequent cryomodule integration. This paper outlines the verification of the various cryomodule sub-components and details the processes utilised for final cavity string integration. The paper also describes the modifications needed to facilitate this new cryomodule installation and ultimate operation on the ALICE facility at Daresbury Laboratory. |
||
WE6RFP079 | Length Scaling of the Electron Energy Gain in the Self-Guided Laser Wakefield Regime Using a 150 TW Ultra-Short Pulse Laser Beam | 2982 |
|
||
Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and DE-FG03-92ER40727, and LDRD 06-ERD-056 Recent laser wakefield acceleration experiments at the Jupiter Laser Facility, Lawrence Livermore National Laboratory, will be discussed where the Callisto Laser has been upgraded and has demonstrated 60 fs, 10 J laser pulses. This 150 TW facility is providing the foundation to develop a GeV electron beam and associated betatron x-ray source for use on the petawatt high-repetition rate laser facility currently under development at LLNL. Initial self-guided experiments have produced high energy monoenergetic electrons while experiments using a multi-centimeter long magnetically controlled optical plasma waveguide are investigated. Measurements of the electron energy gain and electron trapping threshold using 150 TW laser pulses will be presented. |