Paper | Title | Page |
---|---|---|
MO4RAC02 | Status of LHC Crab Cavity Simulations and Beam Studies | 85 |
|
||
Funding: This work was partially performed under the auspices of the US DOE and the European Community-Research Infrastructure, FP6 programme (CARE, contract number RII3-CT-2003-506395)} The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. Some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects, beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here. |
||
|
||
TU6RFP076 | Measurement of Longitudinal and Transverse Impedance of Kicker Magnets Using the Coaxial Wire Method | 1726 |
|
||
Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, even above the Curie temperature of ferrite. In addition the impedance can contribute to beam instabilities. In this paper different variants of the coaxial wire method, both for measuring longitudinal and transverse impedance, are briefly discussed in a tutorial manner and do's and don'ts are shown on practical examples. In addition we present the results of several impedance measurements for SPS kickers using the wire method and compare those results with theoretical models. |
||
WE5PFP075 | The New CERN PS Transverse Damper | 2183 |
|
||
Since 1999 the PS has been operated without active transverse damping thanks to an increase of the coupling between the transverse planes and the reduction of injection steering errors. Although the LHC requirements are met by these means, a new transverse feedback system has been commissioned to reinforce the robustness of operation and avoid the blow-up generated by residual injection steering errors. This system could also allow the reduction of the chromaticity and reduce the slow incoherent losses during the long PS injection plateau. It could also stabilize the high energy instabilities that appear occasionally with the LHC nominal beam and may be a limiting factor for ultimate LHC beam. Highlights include a signal processing with an automatic delay adapting itself to the varying revolution frequency, a programmable betatron phase adjustment along the cycle, pick-ups that have been re-furbished with electronics covering the very low frequency of the first betatron line and a compact wideband high-power solid state amplifier that drives the strip-line kicker via an impedance matching transformer. The overall system is described together with experimental results. |
||
TH5PFP008 | Accelerator Physics Concept for Upgraded LHC Collimation Performance | 3202 |
|
||
The LHC collimation system is implemented in phases, in view of the required extrapolation by 2-3 orders of magnitude beyond Tevatron and HERA experience in stored energy. All available simulations predict that the LHC proton beam intensity with the "phase 1" collimation system may be limited by the impedance of the collimators or cleaning efficiency. Maximum efficiency requires collimator materials very close to the beam, generating the dominant resistive impedance in the LHC. Above a certain intensity the beam is unstable. On the other hand, even if collimators are set very close to the beam, the achievable cleaning efficiency is predicted to be inadequate, requiring either beam stability beyond specifications or reduced intensity. The accelerator physics concept for upgrading cleaning efficiency, for both proton and heavy ion beams, and reducing collimator-related impedance is described. Besides the "phase 2" secondary collimators, new collimators are required in a few super-conducting regions. |
||
TH6PFP073 | Controlled Transverse Emittance Blow-Up in the CERN SPS | 3871 |
|
||
For several years, a large variety of beams have been prepared in the LHC injectors, such as single-bunch and multi-bunch beams, with 25 ns, 50 ns and 75 ns bunch spacings, nominal and intermediate intensities per bunch. As compared to the nominal LHC beam (i.e. with nominal bunch intensity and 25 ns spacing) the other beams can be produced with lower transverse emittances. Beams of low transverse emittances are of interest during the commissioning phase for aperture considerations and because of the reduced long-range beam-beam effects. On the other hand machine protection considerations might lead to prefer nominal transverse emittances for safe machine operations. The purpose of this paper is to present the results of controlled transverse emittance blow-ups using the transverse feedback and octupoles. The procedures tested in the SPS in 2008 allow to tune the transverse emittances up to nominal values at SPS extraction. |
||
FR5RFP034 | Transverse Impedance Localization Using Dependent Optics | 4604 |
|
||
Funding: This work has been partially performed under the auspices of US department of energy Measurements of transverse impedance in the SPS to track the evolution over the last few years show discrepancies compared to the analytical estimates of the major contributors. Recent measurements to localize the major sources of the transverse impedance using intensity dependent optics are presented. Some simulations using HEADTAIL to understand the limitations of the reconstruction and related numerical aspects are also discussed. |
||
FR5RFP045 | Wake and Higher Order Mode Computations for CMS Experimental Chamber at the LHC | 4634 |
|
||
Wakefields and trapped Higher Order Modes in the CMS experimental chamber at the LHC are investigated using a geometrical model which closely reflects the presently installed vacuum chamber. The basic rf-parameters of the higher order modes (HOMs) including the frequency, loss parameter,and the Q-value are provided. To cover also transient effects the short range wakefields and the total loss parameter has been calculated, too. Most numerical calculations are performed with the computer code MAFIA. The calculations of the Modes is complemented with an analysis of the multi-bunch instabilities due to the longitudinal and dipole modes in the CMS vacuum chamber. |
||
FR5RFP047 | Analysis of the Transverse SPS Beam Coupling Impedance with Short and Long Bunches | 4640 |
|
||
The upgrade of the CERN Large Hadron Collider (LHC) would require a four- to fivefold increase of the single bunch intensity presently obtained in the Super Proton Synchrotron (SPS). Operating at such high single bunch intensities requires a detailed knowledge of the sources of SPS beam coupling impedance, so that longitudinal and transverse impedance reduction campaigns can be planned and performed effectively if needed. In this paper, the transverse impedance of the SPS is studied by injecting a single long bunch into the SPS, and observing its decay without RF. This particular setup enhances the resolution of the frequency analysis of the longitudinal and transverse bunch signals acquired with strip line couplers connected to a fast data acquisition. It also gives access to the frequency content of the transverse impedance. Results from measurements with short and long bunches in the SPS performed in 2008 are compared with simulations and theoretical predictions. |
||
FR5RFP048 | An Update of ZBASE, the CERN Impedance Database | 4643 |
|
||
A detailed knowledge of the beam coupling impedance of the CERN synchrotrons is required in order to identify the impact on instability thresholds of potential changes of beam parameters, as well as additions, removal or modifications of hardware. To this end, an update of the impedance database was performed, so that impedance results from theoretical calculations using new multilayer models, impedance results from electromagnetic field simulations and impedance results from bench measurements can be compiled. In particular, the impedance database is now set to separately produce the dipolar and quadrupolar transverse impedance and wakes that the HEADTAIL simulation code needs to accurately simulate the effect of the impedance on the beam dynamics. |
||
FR5RFP049 | Coupling Impedance of the CERN SPS Beam Position Monitors | 4646 |
|
||
A detailed knowledge of the beam coupling impedance of the CERN Super Proton Synchrotron (SPS) is required in order to operate this machine with a higher intensity for the foreseen Large Hadron Collider (LHC) luminosity upgrade. A large number of Beam Position Monitors (BPM) is currently installed in the SPS, and this is why their contribution to the SPS impedance has to be assessed. This paper focuses on electromagnetic simulations and bench measurements of the longitudinal and transverse impedance generated by the horizontal and vertical BPMs installed in the SPS machine. |
||
FR5RFP050 | Beam Instabilities Studies at Transition Crossing in the CERN Proton Synchrotron | 4649 |
|
||
The CERN PS crosses transition energy at about 6 GeV by using a second order gamma jump performed with special quadrupoles. However, for high-intensity beams, and in particular the single bunch beam for the neutron Time-of-Flight facility, a controlled longitudinal emittance blow-up is still needed to prevent a fast single-bunch vertical instability from developing near transition. A series of studies have been done in the PS in 2008 to measure the beam behaviour near transition energy for different settings of the gamma transition jump. The purpose of this paper is to compare those measurements with simulations results from the HEADTAIL code, which should allow to understand better the different mechanisms involved and maybe improve the transition crossing. |
||
FR5RFP052 | Impedance Studies for the Phase 2 LHC Collimators | 4655 |
|
||
The LHC phase 2 collimation project aims at gaining a factor ten in cleaning efficiency, robustness and impedance reduction. From the impedance point of view, several ideas emerged during the last year, such as using dielectric collimators, slots or rods in copper plates, or Litz wires. The purpose of this paper is to discuss the possible choices, showing analytical estimates, electro-magnetic simulations performed using Maxwell, HFSS and GdFidL, and preliminary bench measurements. The corresponding complex tune shifts are computed for the different cases and compared on the stability diagram defined by the settings of the Landau octupoles available in the LHC at 7 TeV. |
||
FR5RFP054 | Multi-Bunch Simulations with HEADTAIL | 4661 |
|
||
The HEADTAIL code has been used for many years to study the interaction of a single bunch with a localized or lumped source of electromagnetic perturbation, usually self-induced (impedance, electron cloud or space charge). It models the bunch as macroparticles and at each turn slices up the bunch into several adjacent charged disks, which are made to subsequently interact with the perturbing agent. A first step toward the extension of HEADTAIL to multi-bunch simulations is presented in this paper. In this case, the bunches themselves are modeled as charged disks and are not sliced, which makes us lose information on the intra-bunch motion but can describe a zero mode interaction between different bunches in a train. The interaction of an SPS bunch train of 72 bunches with the resistive wall or a narrow-band impedance is studied as an example. |