Paper | Title | Page |
---|---|---|
TU5RFP050 | Electron Beam Energy Stabilization Using a Neural Network Hybrid Controller at the Australian Synchrotron Linac | 1201 |
|
||
This paper describes the implementation of a neural network hybrid controller for energy stabilization at the Australian Synchrotron Linac. The structure of the controller consists of a neural network (NNET) feed forward control, augmented by a conventional Proportional-Integral (PI) feedback controller to ensure stability of the system. The system is provided with past states of the machine in order to predict its future state, and therefore apply appropriate feed forward control. The NNET is able to cancel multiple frequency jitter in real-time. When it is not performing optimally due to jitter changes, the system can successfully be augmented by the PI controller to attenuate the remaining perturbations. |
||
WE5RFP046 | Peak Current, Energy, and Trajectory Regulation and Feedback for the LCLS Electron Bunch | 2373 |
|
||
Funding: Work supported by Department of Energy contract DE-AC02-76SF00515. This work was performed in support of the LCLS project at SLAC The Linac Coherent Light Source is an x-ray Free-Electron Laser (FEL) project being commissioned at SLAC. The very bright electron beam required for the FEL is subjected to various sources of jitter along the accelerator. The peak current, centroid energy, and trajectory of the electron bunch are controlled precisely at the highest repetition rate possible with feedback systems. We report commissioning experience for these systems. In particular, there is high frequency content in the electron bunch current spectrum, and we report its impact on the systems. Due to the coupling of the betatron motion and the dispersion component of the electron trajectory, a fast in-line model* is incorporated. For the longitudinal feedback, we report the performance of two different configurations: one with RF system as direct actuators, which are nonlinear, and the other with artificially formed linear energy and energy-chirp actuators. Since the electron bunch is compressed to a final peak current of 2 to 3 kA, coherent synchrotron radiation and other wakefields are included for precise control of the electron bunch parameters. Machine performance is compared to start-to-end simulations. *P. Chu et al., these PAC09 proceedings |