A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Medjidzade, V.

Paper Title Page
MO6RFP005 CesrTA Vacuum System Modifications 357
 
  • Y. Li, X. Liu, V. Medjidzade, M.A. Palmer, D.H. Rice, D. L. Rubin, J.J. Savino
    CLASSE, Ithaca, New York
 
 

Funding: Work supported by the National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program


In concert with the ILC global design effort, the CESR is being converted into ILC Damping Ring Test Accelerator. The vacuum system is undergoing staged reconfigurations to support both the CesrTA physics goals and the CHESS X-ray sources. Six superconducting wigglers were moved to a sector with zero-dispersion. The sector is densely populated with beam instrumentation and diagnostic devices. A new photon stop chamber will be used to handle the high synchrotron radiation power generated from the SCWs at high positron beam energy. A 12-m long gate-valve isolated straight sector was created in a second location, where many electron-cloud diagnostic chambers will be installed and tested. We also configured two very short sections in the arcs, with additional gate valves, to provide flexibility of exchanging various meter-long test chambers with minimum impact to the operations. Many retarding field analyzers were integrated into the vacuum modifications in SCWs, dipoles, and drifts to study EC growth and suppression techniques. Creating environments where both local and collaborator provided equipment can be easily installed has been a major objective in the modifications.

 
TU3RAI01 SRF Experience with the Cornell High-Current ERL Injector Prototype 694
 
  • M. Liepe
    Cornell University, Ithaca, New York
  • S.A. Belomestnykh, E.P. Chojnacki, Z.A. Conway, V. Medjidzade, H. Padamsee, P. Quigley, J. Sears, V.D. Shemelin, V. Veshcherevich
    CLASSE, Ithaca, New York
 
 

Funding: This work is supported by the National Science Foundation.


Cornell University has developed and fabricated a SRF injector cryomodule for the acceleration of the high current (100 mA) beam in the Cornell ERL injector prototype. The injector cryomodule is based on superconducting rf technology with five 2-cell rf cavities operated in cw mode. To support the acceleration of a low energy, ultra low emittance, high current beam, the beam tubes on one side of the cavities have been enlarged to propagate Higher-Order-Mode power from the cavities to broadband rf absorbers located at 80 K between the cavities. The axial symmetry of these absorbers, together with two symmetrically placed input couplers per cavity, avoids transverse on-axis fields, which would cause emittance growth. Each cavity is surrounded by a LHe vessel and equipped with a frequency tuner including fast piezo-driven fine tuners for fast frequency control. The cryomodule provides the support and precise alignment for the cavity string, the 80 K cooling of the ferrite loads, and the 2 K LHe cryogenic system for the high cw heat load of the cavities. In this paper results of the commissioning phase of this injector cryomodule will be reported.

 

slides icon

Slides

 
FR1RAI02 The Conversion and Operation of the Cornell Electron Storage Ring as a Test Accelerator (CesrTA) for Damping Rings Research and Development 4200
 
  • M.A. Palmer, J.P. Alexander, M.G. Billing, J.R. Calvey, S.S. Chapman, G.W. Codner, C.J. Conolly, J.A. Crittenden, J. Dobbins, G. Dugan, E. Fontes, M.J. Forster, R.E. Gallagher, S.W. Gray, S. Greenwald, D.L. Hartill, W.H. Hopkins, J. Kandaswamy, D.L. Kreinick, Y. Li, X. Liu, J.A. Livezey, A. Lyndaker, V. Medjidzade, R.E. Meller, S.B. Peck, D.P. Peterson, M.C. Rendina, P. Revesz, D.H. Rice, N.T. Rider, D. L. Rubin, D. Sagan, J.J. Savino, R.D. Seeley, J.W. Sexton, J.P. Shanks, J.P. Sikora, K.W. Smolenski, C.R. Strohman, A.B. Temnykh, M. Tigner, S. Vishniakou, W.S. Whitney, T. Wilksen, H.A. Williams
    CLASSE, Ithaca, New York
  • J.M. Byrd, C.M. Celata, J.N. Corlett, S. De Santis, M.A. Furman, A. Jackson, R. Kraft, D.V. Munson, G. Penn, D.W. Plate, A.W. Rawlins, M. Venturini, M.S. Zisman
    LBNL, Berkeley, California
  • J.W. Flanagan, P. Jain, K. Kanazawa, K. Ohmi, H. Sakai, K. Shibata, Y. Suetsugu
    KEK, Ibaraki
  • K.C. Harkay
    ANL, Argonne
  • Y. He, M.C. Ross, C.-Y. Tan, R.M. Zwaska
    Fermilab, Batavia
  • R. Holtzapple
    CalPoly, San Luis Obispo, CA
  • J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • D. Kharakh, M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California
  • E.N. Smith
    Cornell University, Ithaca, New York
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
 
 

Funding: Support provided by the US National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program.


In March of 2008, the Cornell Electron Storage Ring (CESR) concluded twenty eight years of colliding beam operations for the CLEO high energy physics experiment. We have reconfigured CESR as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D. The primary goals of the CesrTA program are to achieve a beam emittance approaching that of the ILC Damping Rings with a positron beam, to investigate the interaction of the electron cloud with both low emittance positron and electron beams, to explore methods to suppress the electron cloud, and to develop suitable advanced instrumentation required for these experimental studies (in particular a fast x-ray beam size monitor capable of single pass measurements of individual bunches). We report on progress with the CESR conversion activities, the status and schedule for the experimental program, and the first experimental results that have been obtained.

 

slides icon

Slides