A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

McGee, M.W.

Paper Title Page
TU5PFP058 Construction of a 3.9 GHz Superconducting RF Cavity Module at Fermilab 957
 
  • H.T. Edwards, T.T. Arkan, M.H. Foley, M. Ge, E.R. Harms, A. Hocker, T.N. Khabiboulline, M.W. McGee, D.V. Mitchell, D.R. Olis, A.M. Rowe, N. Solyak
    Fermilab, Batavia
 
 

Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359.


Fermilab is in a collaboration with DESY to provide a cryomodule containing 4-3.9 GHz superconducting RF cavities to be placed in TTF/FLASH. The purpose of this 'Third Harmonic' module is to linearize the nonlinear beam energy-time profile produced by the 1.3 GHz accelerating gradient. The completed module has now been shipped to DESY and is awaiting cold, powered testing and installation into FLASH later this year. We report on experience with fabricating, testing, assembling, and shipping the module and its components with a focus on cavity test results.

 
TU5PFP059 Vibrational Stability of SRF Accelerator Test Facility at Fermilab 960
 
  • M.W. McGee, J.T. Volk
    Fermilab, Batavia
 
 

Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy.


Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab supports the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

 
TU6RFP050 Monitoring the FLASH Cryomodule Transportation from DESY Hamburg to CEA Saclay: Coupler Contact, Vacuum, Acceleration and Vibration Analysis 1659
 
  • M.W. McGee
    Fermilab, Batavia
  • R. Amirikas, M. Boehnert, C. Engling, D. Hoppe, K. Jensch, D. Kostin, C. Mueller, H. Remde, O. Sawlanski, J. Wojtkiewicz
    DESY, Hamburg
  • S. Barbanotti, A. Bosotti, M. Fusetti, P.M. Michelato
    INFN/LASA, Segrate (MI)
  • S. Berry, M. Dorlot, O. Napoly, C.G. Thomas-Madec
    CEA, Gif-sur-Yvette
  • A. Bertolini
    Albert Einstein, Leibniz Universität, Hannover
 
 

With a view to the series production of one hundred, 12 m long XFEL 1.3 GHz cryomodules and their transportation from the assembly site at CEA Saclay (F) to the installation site at DESY Hamburg (D) a test transportation of a FLASH cryomodule has been performed, in the condition foreseen for the mass transportation. The present study examines the stresses induced on the module and verify the damping capabilities of the transport frame in order to minimize risk of damage to the most critical components. During the transportation, acceleration and vibration have been monitored as well as coupler antenna contacts and vacuum performances. This paper describes the analysis performed and compares those results to the data of a similar transportation study at Fermilab for the CM1 cryomodule.

 
TU6RFP051 Transport of DESY 1.3 GHz Cryomodule at Fermilab 1662
 
  • M.W. McGee, T.T. Arkan, E. Borissov, J.R. Leibfritz, W. Schappert
    Fermilab, Batavia
  • S. Barbanotti
    INFN/LASA, Segrate (MI)
 
 

Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy.


In an exchange of technology agreement, Deutsches Elektron-Synchrotron (DESY) Laboratory in Hamburg Germany has provided a 1.3 GHz cryomodule “kit” to Fermilab. The cryomodule components (qualified dressed cavities, cold mass parts, vacuum vessel, etc.) sent from Germany in pieces were assembled at Fermilab’s Cryomodule Assembly Facility (CAF). The cavity string was assembled at CAF-MP9 Class 10 cleanroom and then transported to CAF-ICB cold mass assembly area via a flatbed air ride truck. Finite Element Analysis (FEA) studies were implemented to define location of instrumentation for initial coldmass transport, providing modal frequencies and shapes. Subsequently, the fully assembled cryomodule CM1 was transported to the SRF Accelerator Test Facility at New Muon Lab (NML). Internal geophones (velocity sensors) were attached during the coldmass assembly for transport (warm) and operational (cold) measurements. A description of the isolation system that maintained alignment during transport and protected fragile components is provided. Shock and vibration measurement results of each transport and modal analysis are discussed.

 
TU6RFP052 Transatlantic Transport of Fermilab 3.9 GHz Cryomodule to DESY 1665
 
  • M.W. McGee, J. Grimm, D.R. Olis, W. Schappert
    Fermilab, Batavia
 
 

Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy.


In an exchange of technology agreement, Fermilab has built and delivered a 3.9 GHz (3rd harmonic) cryomodule to Deutsches Elektron-Synchrotron (DESY) Laboratory to be installed in the TTF/FLASH beamline. Transport to Hamburg, Germany was completed via a combination of flatbed air ride truck and commercial aircraft, while minimizing transition or handling points. Initially, destructive testing of fragile components, transport and corresponding alignment stability studies were performed in order to assess the risk associated with transatlantic travel of a fully assembled cryomodule. Data logged tri-axial acceleration results of the transport with a comparison to the transport study predicted values are presented.