Paper | Title | Page |
---|---|---|
MO6RFP035 | Performance Investigation of the NSCL 18 GHz Superconducting ECR Ion Source SUSI | 432 |
|
||
Funding: Supported by the National Science Foundation under grant PHY-0110253 The construction of the SUperconducting Source for Ions (SUSI), a 3rd generation Superconducting ECR ion source for the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University has been completed and commissioning of the source is ongoing. SUSI operates primarily at 18GHz and is scheduled to replace the 6.4 GHz SC-ECR for injection in the coupled cyclotron later this year. Excellent performances during commissioning have been obtained with SUSI for the production of highly charged ions for both metallic and gas elements and will be presented. A set of six solenoid coils gives SUSI the capability to modify the length and the position of the resonant zone and also to adjust the gradient of the axial magnetic field near the resonance. The impact of this flexible magnetic field profile on the ion beam production and the charge state distribution is actively studied and will be discussed. Emittance measurements of the ion beam extracted from SUSI have been performed and will also be presented. |
||
TU3PBC06 | Recent Development at the NSCL Small Isochronous Ring | 733 |
|
||
Funding: this work is supported by National Science Foundation Grant PHY-0606007. The Small Isochronous Ring (SIR) at the NSCL/MSU was built to study space charge effects in the isochronous regime. Results of experimental studies of the longitudinal beam dynamics in the ring showed a remarkable agreement with results of numerical simulations. Recently, we have designed and built an energy analyzer to accurately measure the beam energy spread. We will present results of energy spread measurements as well as simulations of the beam behavior based on the Vlasov formalism. |
||
|
||
TU6RFP059 | Experimental Studies of the ReA3 Triple-Harmonic Buncher | 1686 |
|
||
Funding: Michigan State University The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is implementing a system called the ReA3 to reaccelerate rare isotope beams from projectile fragmentation to energies of about 3 MeV/u. The 80.5 MHz triple-harmonic buncher before the ReA3 Radio Frequency Quadrupole (RFQ) linac has recently been implemented and measurements made. Tests using beams from the Electron Cyclotron Resonance (ECR) ion source test stand are being performed. The beam properties after the buncher are fully characterized using various diagnostic tools (e.g. fast Faraday cup, energy analyzer, emittance scanner). As a result, the tuning procedures for the buncher operations are developed. We will present the detailed results of the beam based buncher studies and compare them with simulations. |
||
WE5PFP039 | Development of a Superconducting Half Wave Resonator for Beta 0.53 | 2080 |
|
||
A medium-velocity half wave resonator has been designed and prototyped at the National Superconducting Cyclotron Laboratory for use in a heavy ion linac. The cavity is designed to provide 3.7 MV of accelerating voltage at an optimum beta = v/c = 0.53, with peak surface electric and magnetic fields of 32.5 MV/m and 79 mT, respectively. The resonant frequency is 322 MHz. The cavity was designed to reduce sensitivity to bath pressure fluctuations while maintaining a structure that can be easily fabricated, cleaned, and tuned. Deep draw forming dies and a copper cavity prototype were fabricated to confirm tolerances and formability. A prototype tuner was built; the helium vessel and power coupler have been designed. Measurements were performed to confirm finite element predictions for the mechanical modes, bath pressure sensitivity, tuner stiffness, and tuning range. |
||
TH6PFP085 | Beam Dynamics Studies for the FRIB Driver Linac | 3901 |
|
||
Funding: U.S. Department of Energy A driver linac has been designed for the proposed Facility for Rare Isotope Beam (FRIB) at Michigan State University. FRIB is a lower cost and reduced scope alternative to the Rare Isotope Accelerator (RIA) project. The superconducting driver linac will accelerate stable isotope beams to energies ≥200 MeV/u with a beam power up to 400 kW for the production of rare isotope beams. The driver linac consists of a front-end and two segments of superconducting linac connected by a charge stripping station. End-to-end beam simulation studies with high statistics have been performed using the RIAPMTQ and IMPACT codes on high performance parallel computers. These studies include misalignment of beam elements, rf amplitude and phase errors for cavities, and thickness variation of the stripping foil. Three-dimensional fields of the superconducting solenoids and cavities were used in the lattice evaluation. The simulation results demonstrate good driver linac performance. No uncontrolled beam losses were observed even for the challenging case of multiple charge state uranium beam acceleration. The beam dynamics issues will be discussed and the detail beam simulation results presented. |
||
FR5RFP036 | Longitudinal Space Charge Effects near Transition | 4610 |
|
||
Studies of space charge effects in the Small Isochronous Ring (SIR) at Michigan State University revealed a fast longitudinal instability at and below the transition that could not be explained by the conventional negative mass instability. The observed beam behavior can be explained by the effect of the radial component of the coherent space charge force on the longitudinal motion. The transverse coherent space charge force effectively modifies the slip factor shifting the isochronous point and enhancing the negative mass instability. This paper presents results of numerical and experimental studies of the longitudinal beam dynamics in SIR and proposes an analytical model explaining the results. |
||
FR5REP073 | The MSU-Proposed Superconducting Driver Linac for the FRIB Project | 4947 |
|
||
Funding: This work is supported by the U.S. Department of Energy The superconducting (SC) driver linac developed for the proposed Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU) will be able to accelerate stable beams of heavy ions to > 200 MeV/u with beam powers up to 400 kW. The driver linac front-end will include ECR ion sources, a bunching system for multi-charge state beams and a radio frequency quadrupole (RFQ). The superconducting linac will have a base frequency of 80.5 MHz primarily using SC cavities and cryomodules developed for the Rare Isotope Accelerator (RIA), the FRIB predecessor. A charge-stripping chicane and multiple-charge state acceleration will be used for the heavier ions in the driver linac. A beam delivery system will transport beam to the in-flight particle fragmentation target station. The paper will discuss recent progress in the accelerator system design for the superconducting driver linac. |
||
FR5REP120 | Beam Funneling in the Facility for Rare Isotope Beams | 5062 |
|
||
The Facility for Rare Isotope Beams (FRIB) will provide intense beams of short-lived isotopes for fundamental research in nuclear structure and nuclear astrophysics. Operation of the facility requires intense uranium primary beams. At the present time acceleration of two simultaneous charge states of uranium from a single ion source is needed to achieve the required intensity. Three schemes are considered for funneling the beams from two sources as an alternate solution. One is the traveling wave RF kicker for merging of bunched beams extracted from ECR ion sources. Another one implements the idea of utilizing an RFQ for beam merging*, which can be used after preliminary acceleration of both beams. The third approach assumes usage of a conventional standing-wave RF kicker. Parameters of all three schemes are compared and analyzed. *R.H.Stokes and G.N.Minerbo, AIP Conference Proceedings 139 (1985), p.79. |
||
FR5REP121 | Effect of Space Charge on Extraction Efficiency of Ions in Cyclotron Gas Stopper | 5065 |
|
||
Cyclotron gas stopper is a newly proposed device to stop energetic ions in a high pressure helium gas and to transport them in a singly charged state with a gas jet to a vacuum region. Radioactive ions are slowed down by gas collisions inside the field of a weakly focusing cyclotron-type magnet and extracted via interaction with the Radio Frequency field of sequence of concentric electrodes (RF carpet). The present study focuses on a detailed understanding of space charge effects in the central ion extraction region. Such space charge effects originate from the ionization of the helium gas during the stopping of the ions and are the cause for beam rate limitations. Particle-in-cell simulation of two-component (electron-helium) plasma interacting via Coulomb forces were performed in a field created by ionized ions. Simulation results indicate beam rate capabilities and efficiencies far beyond those achieved with linear gas cells presently used to stop projectile fragments. |