Paper | Title | Page |
---|---|---|
MO6PFP015 | Fabrication and Production Test Results of Multi-Element Corrector Magnets for the Fermilab Booster Synchrotron | 163 |
|
||
Funding: Work supported by the U.S. Department of Energy The fabrication of the multi-element corrector magnets for the Fermilab Booster synchrotron has just been completed. These water-cooled packages include six different corrector types - normal and skews oriented dipole, quadrupole and sextupole elements. They will provide full orbit control, tune and chromaticity of the beam over the whole range of Booster energies, from 0.4 GeV to 8 GeV. During production, a set of quality assurance measurements were performed, including special thermal tests. This paper summarizes the results from these measurements as well as discussing some specific steps of the magnet fabrication process. |
||
MO6PFP059 | 4-Coil Superconducting Helical Solenoid Model for MANX | 265 |
|
||
Funding: Supported in part by USDOE STTR Grant DE-FG02-06ER86282 Magnets for the proposed muon cooling demonstration experiment MANX (Muon collider And Neutrino factory eXperiment) have to generate longitudinal solenoid and transverse helical dipole and helical quadrupole fields. This paper discusses the 0.4 M diameter 4-coil Helical Solenoid (HS) model design, manufacturing, and testing that has been done to verify the design concept, fabrication technology, and the magnet system performance. The model quench performance in the FNAL Vertical Magnet Test Facility (VMTF) will be discussed. |
||
MO6PFP078 | Status of R&D on a Superconducting Undulator for the APS | 313 |
|
||
Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. An extensive R&D program is underway at the Advanced Photon Source (APS) with the aim of developing a technology capable of building a 2.4-m-long superconducting planar undulator for APS users. The initial phase of the project concentrates on using a NbTi superconductor and includes magnetic modeling, development of manufacturing techniques for the undulator magnet, and design and test of short prototypes. The current status of the R&D phase of the project is described in this paper. |