A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

MacDonald, S.W.T.

Paper Title Page
FR5REP045 Energy Upgrade of the ATLAS SC Heavy-Ion Linac 4869
 
  • P.N. Ostroumov, J.D. Fuerst, S.M. Gerbick, M. Kedzie, M.P. Kelly, S.W.T. MacDonald, R.C. Pardo, S.I. Sharamentov, K.W. Shepard, G.P. Zinkann
    ANL, Argonne
 
 

Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.


An energy upgrade project of the ATLAS heavy ion linac at ANL includes a new cryomodule containing seven {10}9 MHz β=0.15 quarter-wave superconducting cavities to provide an additional 15 MV voltage to the existing linac. Several new features have been incorporated into both the cavity and cryomodule design. For example, the primary feature of the cryomodule is a separation of the cavity vacuum space from the insulating vacuum. The cavities are designed in order to cancel the beam steering effect due to the RF field. The cryomodule was designed and built as a prototype for the driver linac of the Facility for Rare Isotope Beams (FRIB). Similar design can be effectively used in the SC proton linac for the Project X at FNAL. Currently, we are working on cryomodule assembly and final preparation of cryogenics, RF, vacuum and other subsystems for off-line tests. The initial commissioning results will be reported.