A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Logan, B.G.

Paper Title Page
TU6PFP098 Multi-Meter-Long Plasma Source for Heavy Ion Beam Charge Neutralization 1528
 
  • P. Efthimion, R.C. Davidson, E.P. Gilson
    PPPL, Princeton, New Jersey
  • B.G. Logan, P.A. Seidl, W.L. Waldron
    LBNL, Berkeley, California
 
 

Funding: Research Supported by US Department of Energy.


Plasma are a source of unbound electrons for charge netralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage (~8kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO3 source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5x1010 cm-3 density range. The source has been integrated into the NDCX device for charge neutralization and beam compression experiments. Initial beam compression experiment yielded current compression ratios ~ 120. Recently, an additional 1 meter long source was fabricated to produce a 2 meter source for NDCX compression experiments. Present research is developing higher density sources to support beam compression experiments for high density physics applications.

 
TH3GAI03 Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in Background Plasma 3090
 
  • I. Kaganovich, R.C. Davidson, M. Dorf, A.B. Sefkow, E. Startsev
    PPPL, Princeton, New Jersey
  • J.J. Barnard
    LLNL, Livermore, California
  • A. Friedman, E. P. Lee, S.M. Lidia, B.G. Logan, P.K. Roy, P.A. Seidl
    LBNL, Berkeley, California
  • D.R. Welch
    Voss Scientific, Albuquerque, New Mexico
 
 

Funding: Research supported by the US Department of Energy.


Neutralized drift compression offers an effective means for particle beam focusing and current amplification. In neutralized drift compression, a linear radial and longitudinal velocity drift is applied to a beam pulse, so that the beam pulse compresses as it drifts in the focusing section. The beam intensity can increase more than a factor of 100 in both the radial and longitudinal directions, totaling to more than a 10,000 times increase in the beam density during this process. The optimal configuration of focusing elements to mitigate the time-dependent focal plane is discussed in this paper. The self-electric and self-magnetic fields can prevent tight ballistic focusing and have to be neutralized by supplying neutralizing electrons. This paper presents a survey of the present numerical modeling techniques and theoretical understanding of plasma neutralization of intense particle beams. Investigations of intense beam pulse interaction with a background plasma have identified the operating regimes for stable and neutralized propagation of intense charged particle beams.

 

slides icon

Slides

 
FR5RFP007 Capture and Control of Laser-Accelerated Proton Beams: Experiment and Simulation 4545
 
  • F. Nürnberg, B.G. Logan
    LBNL, Berkeley, California
  • I. Alber, K. Harres, M. Roth, M. Schollmeier
    TU Darmstadt, Darmstadt
  • W.A. Barth, H. Eickhoff, I. Hofmann
    GSI, Darmstadt
  • A. Friedman, D.P. Grote
    LLNL, Livermore, California
 
 

Ion acceleration from high-intensity, short-pulse laser irradiated thin foils has attracted much attention during the past decade. The emitted ion and, in particular, proton pulses contain large particle numbers (exceeding a trillion particles) with energies in the multi-MeV range and are tightly confined in time (< ps) and space (source radius a few micrometers). The generation of these high-current beams is a promising new area of research and has motivated pursuit of applications such as tabletop proton sources or pre-accelerators. Requirements for an injector are controllability, reproducibility and a narrow (quasi-monoenergetic) energy. However, the source provides a divergent beam with an exponential energy spectrum that exhibits a sharp cutoff at its maximum energy. The laser and plasma physics group of the TU Darmstadt, in collaboration with GSI and LBNL, is studying possibilities for transport and RF capture in conventional accelerator structures. First results on controlling laser-accelerated proton beams are presented, supported by WARP simulations.

 
TH3GAI04 Progress in Beam Focusing and Compression for Target Heating and Warm Dense Matter Experiments 3095
 
  • P.A. Seidl, A. Anders, F.M. Bieniosek, J.E. Coleman, J.-Y. Jung, M. Leitner, S.M. Lidia, B.G. Logan, P.N. Ni, D. Ogata, P.K. Roy, W.L. Waldron
    LBNL, Berkeley, California
  • J.J. Barnard, R.H. Cohen, D.P. Grote
    LLNL, Livermore, California
  • M. Dorf, E.P. Gilson
    PPPL, Princeton, New Jersey
  • D.R. Welch
    Voss Scientific, Albuquerque, New Mexico
 
 

The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the warm dense matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlled ramps and forced neutralization. Using an injected 30 mA K+ ion beam with initial kinetic energy 0.3 MeV, axial compression leading to ~100X current amplification and simultaneous radial focusing to a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to NDCX to reach the necessary higher beam intensities, including:

  1. greater axial compression via a longer velocity ramp;
  2. beam steering dipoles to mitigate aberrations in the bunching module;
  3. time-dependent focusing elements to correct considerable chromatic aberrations; and
  4. plasma injection improvements to establish a plasma density always greater than the beam density, expected to be >1013 cm-3.

 

slides icon

Slides