Paper | Title | Page |
---|---|---|
WE5PFP089 | Study of Direct RF Feedback with the Pedersen Model | 2219 |
|
||
The direct RF feedback has been adopted in storage ring to reduce the beam loading effect for maximizing the stored beam current. Its performance in reducing beam loading is determined by the operational parameters, including the feedback gain, RF phase shift and the loop delay time. This paper presents a mathematical method, based on the Pedersen model, to study the effects of the direct RF feedback on beam loading. Through an example, the influences of different operational parameters on the performance of the direct RF feedback is analyzed by examining the characteristic equation of the feedback loop. The Nyquist criterion is applied for the determination of system stability. |
||
WE5PFP090 | Energy Saving Controller for the TLS Booster RF System | 2222 |
|
||
The quasi-constant current operation is achieved in the NSRRC by periodically injecting electrons from the booster to the storage ring. It means the booster RF system keeps running during operation period, even the injection period occupies only a small portion of the total operation time. To benefit both the energy saving and klystron life, an energy saving controller has been developed and integrated into the TLS booster RF system. The cathode current of the klystron is decreased during the top-injection period. The energy consumption is thus dramatically reduced. A continuous record since the beginning of 2009 shows this controller can save about 78 percent of energy consumption of the booster RF system during normal operation. An overview of the control architecture and its functionality is presented herein. |
||
WE6RFP006 | Cryogenic Considerations on SRF Operation at 2K for a Light Source Using a Standard 4.5K Cryo-Plant | 2793 |
|
||
The feasibility of SRF operation at 2K using the remaining refrigeration capacity of an operating 4.5K cryogenic plant at NSRRC is examined. A refrigeration configuration with warm compression is proposed under an assumption that a reasonable amount of cryogenic heat load is required at 2K. The expectation of the efficacy of the cold and warm heat exchangers (HEX) is evaluated in terms of the corresponding equivalent cryogenic heat load on the 4.5K cold box. A factor approximately 9.5 or 6.0 is required to convert the cryogenic loss, 12 W at 2K, into our 4.5K cold box operated in a refrigeration mode without or with the cold heat exchanger (efficiency 85 %), respectively. An additional benefit is that the required volumetric pumping speed of the warm compressor can be greatly decreased. Moreover, a considerable cold capacity from the sub-atmospheric cold return helium gas can be ultimately converted by combining the cold HEX working together with a highly effective warm HEX, to a conversion factor 3.8 with an efficiency 95 %. Special attention must be devoted to minimize the risk of contamination or impurity for a turbine refrigerator. |
||
TH6REP004 | Development of a Fast Signal-Gating Circuit for Observation of Fast Glitch of Photon Beam Intensity at NSRRC | 3956 |
|
||
Stability of photon beam intensity, I0, is one of the most important performance merits of a modern light source. The photon intensity measured at dragon beam line (BL11) is routinely used as a reference signal for I0 stability measurements. At NSRRC, a highly stable I0 intensity is maintained in most percentage of the user beam time. Meanwhile, glitches of I0 intensity up to few tens of percentage had been observed once every few operating hours, which was a puzzle before its reason had been identified later. A spontaneous large variation of photon intensity (I/I0) caused difficulties for users operating their experiments. Here, we report our development of a dedicated electronic circuit with functionality of single-gate, which was very helpful to clarify the puzzle of I0 glitches observed at NSRRC. |
||
FR5REP032 | Diagnostic Systems for the TLS SRF System | 4838 |
|
||
To improve the reliability of a contemporary synchrotron as light source, a diagnostic system is crucial. A satisfactory diagnostic system must enable a clear presentation of the reason for a system fault, and provide sufficient information to the data analyzer for system recovery and improvement. To identify a fault and to monitor the operation of a RF system, many diagnostic utilities have been adopted. The architecture for the diagnostics of the TLS RF system is here reported. |