Paper | Title | Page |
---|---|---|
MO6PFP026 | Design Considerations for the TPS Pulsed Magnets System | 190 |
|
||
The highly stable pulsed magnets are designed for injection and extraction the electron beams operation in Taiwan Photon Source. The injection to the booster at 0.15 GeV is performed with septum and kicker devices as well as the extraction from the booster at 3 GeV. There are 5 in-vacuum septum and kicker magnets used for booster injection and extraction processes. For the storage ring, an injection of the electron beam into the storage ring is performed with a septum magnet and four identical kicker magnets. All pulsed magnets are designed for injection into the 3-GeV storage ring. The kicker magnet is excited with a 4.8-μs half-sine current waveform. A prototype of kicker magnet with 0.6 m of length is made and tested for examining the field errors. The field performances of the kicker magnet are presented. All pulsed magnets are fed with special current waveform. Both pulsed magnets are considered with the goal to achieve reliable work. |
||
TU6RFP014 | The EMI Reduction of Pulsed Magnets in NSRRC | 1559 |
|
||
The purpose of this paper is to reduce the Electromagnetic Interference (EMI) from kicker and its pulsed power supply. Analysis of conducted and radiated EMI is the beginning mission. Different frequency range of radiated EMI was measured by different sensors. A hybrid shielding method was used to test reduction of radiated EMI. The copper and μ-metal enclosure was used on kicker magnet to prevent the radiated EMI. The reduction of electromagnetic field showed the effect of different material. Besides, the conducted EMI was also tested and eliminated by adding grounding routs. For decreasing grounding noise to other systems, the individual grounding bus was installed. The experimental results showed significant effect. In the future, TPS (Taiwan Photon Source) injection magnets will design higher performance, lower EMI than TLS (Taiwan Light Source). Therefore reducing and eliminating the interference of electromagnetic waves will be a very important issue. All the EMI prevention schemes will implement in the new project. |
||
TU6RFP040 | Design of the TPS Injection System | 1632 |
|
||
The Taiwan Photon Source (TPS) is a new 3 GeV synchrotron light source to be built at the National Synchrotron Radiation Research Center (NSRRC) in Taiwan. The design of TPS is aimed to provide a low-emittance and high-brilliance beam with operation in the top-up mode. In this paper we present the design of the TPS injection section and the transport line from booster to storage ring. The specifications and parameters of the septa, kickers, and ceramic chambers are also described. |
||
TU6RFP098 | Conduction EMI and EMC Measure and Test Power Supply in NSRRC | 1778 |
|
||
The correction power supplies are working in the storage ring of NSRRC. They are required to output high quality and high performance current that is long-term stability and output current ripple are required to be under 100ppm. The storage ring consists of more than one hundred units of independence power supplies working together when beam current in 1.5GeV status. The power supplies also are all working under current mode. We just build a new conduction EMI (Electromagnetic Interference) and EMC (Electromagnetic Compatibility) measurement laboratory to measure and test the switching power supplies. That is AC to DC voltage bus source to supply for the switching correction power supply. Using the LISN to obtain conduction noise, it is high frequency voltage noise generated by the switching mode of power supply conduction noise. The current signal pass AC source impendence stabilize network LISN and spectrum analyzer will obtain the conduction noise. We can use a noise separator to separate common EMI noise and difference-mode EMI noise for EMI filtering design. The measurement result will be illustrated in the paper. |