Paper | Title | Page |
---|---|---|
MO4PBC03 | Developments for Cornell's X-Ray ERL | 106 |
|
||
Cornell University is planning to build an Energy-Recovery Linac (ERL) X-ray facility. In this ERL design, a 5 GeV superconducting linear accelerator extends the CESR ring which is currently used for the Cornell High Energy Synchrotron Source (CHESS). Here we describe some of the recent developments for this ERL, including linear and nonlinear optics, tracking studies, vacuum system design, gas and intra beam scattering computations, and collimator and radiation shielding calculations based on this optics, undulator developments, optimization of X-ray beams by electron beam manipulation, technical design of ERL cavities and cryomodules, and preparation of the accelerator site. |
||
|
||
TU5PFP042 | Electromagnetic and Mechanical Properties of the Cornell ERL Injector Cryomodule | 915 |
|
||
Funding: Work supported by NSF Grant PHY 0131508 This paper reports results of cold measurements characterizing the electro-mechanical properties of the Cornell ERL injector cryomodule, which houses five superconducting niobium elliptical 2-cell cavities developed for a high-current (100 mA) low-emittance electron beam. Each cavity is equipped with a blade tuner. The Cornell ERL blade tuner is a modified version of the INFN-Milano design, and incorporates 4 piezoelectric actuators and accelerometers enabling concurrent slow/fast cw RF frequency control and mechanical vibration measurements. Cavity microphonics and fast tuner electro-mechanical transfer functions for all of the cavities have been measured and show the feasibility of stable feedback control at microphonic noise frequencies below ~100 Hz. |
||
TU5PFP043 | Fast Piezoelectric Actuator Control of Microphonics in the CW Cornell ERL Injector Cryomodule | 918 |
|
||
Funding: Work supported by NSF Grant PHY 0131508 The RF power required to phase-stabilize the Cornell University ERL main linac cavities is expected to be driven by microphonic-noise. To reduce the required RF power we are exploring the possibility of active compensation of cavity microphonic noise with the cavities in the Cornell ERL injector cryomodule. The Cornell ERL injector cryomodule houses five elliptical 2-cell SRF cavities developed for the acceleration of a high current (100mA) ultra-low emittance beam and is currently undergoing extensive testing and commissioning. Each of the five cavities is equipped with a blade tuner; each blade tuner integrates 4 piezoelectric actuators and vibration sensors for the active compensation of cavity detuning. This paper presents first results of active frequency-stabilization experiments performed with the Cornell ERL injector cryomodule cavities and their integral blade/piezoelectric fast tuners. |
||
TU5PFP045 | Status of Niowave/Roark ILC Vendor Qualification Tests at Cornell | 924 |
|
||
Funding: Work Supported by the U.S. Department of Energy To build the ~14,000 cavities required for the ILC each of the three world regions must have a sizable industrial base of qualified companies to draw cavities from. One of these companies, Niowave Inc., recently manufactured six 1.3 GHz single-cell cavities for qualification purposes. All six cavities achieved gradients above 25 MV/m before they were limited by the available RF power (Q-slope) or quenched. This paper will report the results of cold tests for all six cavities and on the causes of quench determined by 2nd sound detection and optical inspection. |
||
TU5PFP046 | ILC Testing Program at Cornell University | 927 |
|
||
Funding: Work Supported by the U.S. Department of Energy Cornell University’s superconducting niobium nine-elliptical-cell cavity testing and repair program is one contributor to the collaborative effort on critical SRF R&D for the ILC. The Cornell University program benefits from several unique features which provide for the rapid testing and, if necessary, repair of ILC nine-cell cavities: a continuous vertical electropolish procedure, superfluid helium second sound defect location, and tumble polishing. First, we report on the cavity 2K RF performance and the effect of micro-EP preceding the cavity test. Single-cell results at KEK have shown that micro-EP as a final surface treatment reduces the spread in gradients, but micro-EP has not yet been tried with multi-cell cavities. Secondly, we report on the highly efficient method of detecting defects using a few He-II second sound wave detectors and powering several modes of the 1.3GHz TM010 passband. |
||
TU5PFP047 | Multi-Cell Reentrant Cavity Development and Testing At Cornell | 930 |
|
||
Funding: Work Supported by the NSF and the DOE An innovative reentrant cavity design instigated the initial, highly successful, superconducting niobium reentrant-single-cell cavity tests at Cornell and KEK. Prompted by the success of the single cell program a joint effort of Cornell University and Advanced Energy Systems (AES) fabricated two multiple-cell reentrant cavities: a three-cell and a nine-cell cavity. This paper reports the development status of these two cavities. First, the results of cold tests, superfluid helium defect location and repair work on the reentrant nine-cell cavity will be presented. Second, the results of cold tests, including defect location and repair efforts of the reentrant three-cell cavity will be presented. |
||
TU5PFP051 | Superconducting Multicell Cavity Design for the Energy Recovery Linac at Cornell | 939 |
|
||
Funding: DOE The first phase of the Cornell Energy Recovery Linac was the high current, low emittance injector. At present the injector is under commissioning. The next phase calls for the development of multicell cavity for the main linac. The cavities need to have low RF losses to minimize refrigeration and strong HOM damping to preserve low emittance and prevent beam break-up at high current (100 mA). Here we present the RF design of the cavity meeting these requirements. |
||
TU5PFP052 | Exploring the Maximum Superheating Magnetic Fields of Niobium | 942 |
|
||
The superheating magnetic field of a superconducting niobium 1.3 GHz reentrant cavity was measured at several points in the temperature range from (1.7 to 4.4) K. This experimental data is used to discriminate between two competing theoretical s for the temperature dependent behavior of the RF superheating field. Measurements were made with <250 us high power pulses (HPP, ~1MW) to avoid defect initiated thermal breakdown from contaminating the data. Our test incorporated oscillating superleak transducers to determine the cavity quench locations and characterize changes and the migrations of the quench locations during processing. This information provides insight into the factors which limit the ultimate achievable RF surface magnetic field. |
||
WE5PFP043 | Beam Pipe HOM Absorber for 750 MHz RF Cavities | 2092 |
|
||
Funding: Supported in part by USDOE Contract. DE-AC05-84-ER-40150 Superconducting HOM-damped (higher-order-mode-damped) RF systems are needed for present and future storage ring and linac applications. Superconducting RF (SRF) systems typically contain unwanted frequencies or higher order modes (HOM) that must be absorbed by ferrite and other lossy ceramic-like materials that are brazed to substrates mechanically attached to the drift tubes adjacent to the SRF cavity. These HOM loads must be thermally and mechanically robust and must have the required broadband microwave loss characteristics, but the ferrites and their attachments are weak under tensile stresses and thermal stresses and tend to crack. A HOM absorber with improved materials and design will be developed for high-gradient 750 MHz superconducting cavity systems. RF system designs will be numerically modeled to determine the optimum ferrite load required to meet the broadband loss specifications. Several techniques for attaching ferrites to the metal substrates will be studied, including full compression rings and nearly-stress-free ferrite assemblies. Prototype structures will be fabricated and tested for mechanical strength. |
||
WE6RFP002 | Design of an ERL Linac Cryomodule | 2781 |
|
||
Funding: Work supported by NSF, New York State, and Cornell University A cryomodule design for the Cornell Energy Recovery Linac (ERL) will be based on TTF technology, but must have several unique features dictated by the ERL beam parameters. The main deviations from TTF are that the HOM loads must be on the beamline for sufficient damping, that the average power through the RF couplers is low, and that cw beam operation introduces higher heat loads. Several of these challenges were addressed for the Cornell ERL Injector, from which fabrication and operational insight was gained. A baseline design for the Cornell ERL Linac cryomodule will be presented that includes fabrication and operational considerations along with thermal and mechanical analyses. |
||
TU2GRI01 | Initial Beam Results from the Cornell High-Current ERL Injector Prototype | 683 |
|
||
Cornell University has built a high average current electron injector for use with an Energy Recovery Linac. The injector is capable of up to 100 mA average current at 5 MeV (33 mA at 15 MeV) and is expected to produce the ultra low emittances needed for an ERL. This talk will give an overview of the initial performance of this injector and summarize a spectrum of beam physics experiments undertaken to demonstrate low emittance, high average current operation. |
||
|
||
WE5PFP050 | Preparations for Assembly of the International ERL Cryomodule at Daresbury Laboratory | 2113 |
|
||
The collaborative development of an optimised cavity/cryomodule solution for application on ERL facilities, has now progressed to final assembly and testing of the cavity string components and their subsequent cryomodule integration. This paper outlines the verification of the various cryomodule sub-components and details the processes utilised for final cavity string integration. The paper also describes the modifications needed to facilitate this new cryomodule installation and ultimate operation on the ALICE facility at Daresbury Laboratory. |
||
TU3RAI01 | SRF Experience with the Cornell High-Current ERL Injector Prototype | 694 |
|
||
Funding: This work is supported by the National Science Foundation. Cornell University has developed and fabricated a SRF injector cryomodule for the acceleration of the high current (100 mA) beam in the Cornell ERL injector prototype. The injector cryomodule is based on superconducting rf technology with five 2-cell rf cavities operated in cw mode. To support the acceleration of a low energy, ultra low emittance, high current beam, the beam tubes on one side of the cavities have been enlarged to propagate Higher-Order-Mode power from the cavities to broadband rf absorbers located at 80 K between the cavities. The axial symmetry of these absorbers, together with two symmetrically placed input couplers per cavity, avoids transverse on-axis fields, which would cause emittance growth. Each cavity is surrounded by a LHe vessel and equipped with a frequency tuner including fast piezo-driven fine tuners for fast frequency control. The cryomodule provides the support and precise alignment for the cavity string, the 80 K cooling of the ferrite loads, and the 2 K LHe cryogenic system for the high cw heat load of the cavities. In this paper results of the commissioning phase of this injector cryomodule will be reported. |
||
|
||
TU5PFP048 | Robustness of the Superconducting Multicell Cavity Design for the Cornell Energy Recovery Linac | 933 |
|
||
Funding: This work is supported by the National Science Foundation. Cornell University is developing an Energy-Recovery-Linac driven x-ray light source. One of the major components of this accelerator will be its 5 GeV superconducting main linac. The design of the superconducting RF cavities in this main linac has been optimized primarily for two objectives: (1) low RF losses from the accelerating mode to minimize refrigeration cost and (2) strong Higher-Order-Mode damping to preserve low emittance and prevent beam break-up at high beam current (100 mA). In this paper we study the robustness of this optimized cavity design with respect to small cell shape fluctuations from fabrication errors. |