A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Lidia, S.M.

Paper Title Page
MO6RFP033 Development of a Li+ Alumino-Silicate Ion Source 426
 
  • P.K. Roy, A. Anders, W.G. Greenway, J.W. Kwan, S.M. Lidia, P.A. Seidl, W.L. Waldron
    LBNL, Berkeley, California
 
 

Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.


To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target*. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to {10}00-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements of high ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.


*J.J. Barnard et al., Nuclear Instruments and Methods in Physics Research A 577 (2007) 275–283.

 
MO6RFP076 Optimization Studies for the Advanced Photoinjector Experiment (APEX) 548
 
  • S.M. Lidia
    LBNL, Berkeley, California
 
 

Funding: This work was supported by the Office of Science, U. S. Department of Energy, under Contract No. DE-AC02-05CH11231.


The Advanced Photoinjector Experiment (APEX) seeks to validate the design of a proposed high-brightness, normal conducting RF photoinjector gun and bunching cavity feeding a superconducting RF linac to produce nC-scale electron bunches with sub-micron normalized emittances at MHz-scale repetition rates. The beamline design seeks to optimize the slice-averaged 6D brightness of the beam prior to injection into a high gradient linac for further manipulation and delivery to an FEL undulator. Details of the proposed beamline layout and electron beam dynamics studies are presented.

 
TU6PFP092 Commissioning Results of the Upgraded Neutralized Drift Compression Experiment 1510
 
  • S.M. Lidia, P.K. Roy, P.A. Seidl, W.L. Waldron
    LBNL, Berkeley, California
  • E.P. Gilson
    PPPL, Princeton, New Jersey
 
 

Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.


Recent changes to the NDCX beamline offer the promise of higher current compressed bunches, with correspondingly larger fluences, delivered to the target plane for ion-beam driven warm dense matter experiments. We report modeling and commissioning results of the upgraded NDCX beamline that includes a new induction bunching module with approximately twice the volt-seconds and greater tuning flexibility, combined with a longer neutralized drift compression channel.

 
TU6PFP093 Fast Correction Optics to Reduce Chromatic Aberrations in Longitudinally Compressed Ion Beams 1513
 
  • S.M. Lidia, E. P. Lee, D. Ogata, P.A. Seidl, W.L. Waldron
    LBNL, Berkeley, California
  • S.M. Lund
    LLNL, Livermore, California
 
 

Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.


Longitudinally compressed ion beam pulses are currently employed in ion-beam based warm dense matter studies. Compression arises from an imposed time-dependent longitudinal velocity ramp followed by drift in a neutralized channel. Chromatic aberrations in the final focusing system arising from this chirp increase the attainable beam spot and reduce the effective fluence on target. We report recent work on fast correction optics that remove the time-dependent beam envelope divergence and minimizes the beam spot on target. We present models of the optical element design and predicted ion beam fluence, as well as benchtop measurements of pulsed waveforms and response.

 
WE5PFP050 Preparations for Assembly of the International ERL Cryomodule at Daresbury Laboratory 2113
 
  • P.A. McIntosh, R. Bate, C.D. Beard, D.M. Dykes, S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S.A. Belomestnykh, M. Liepe, H. Padamsee, J. Sears, V.D. Shemelin, V. Veshcherevich
    CLASSE, Ithaca, New York
  • A. Büchner, F.G. Gabriel, P. Michel
    FZD, Dresden
  • M.A. Cordwell, J. Strachan
    STFC/DL, Daresbury, Warrington, Cheshire
  • J.N. Corlett, D. Li, S.M. Lidia
    LBNL, Berkeley, California
  • T. Kimura, T.I. Smith
    Stanford University, Stanford, California
  • D. Proch, J.K. Sekutowicz
    DESY, Hamburg
  • A. Quigley
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
 
 

The collaborative development of an optimised cavity/cryomodule solution for application on ERL facilities, has now progressed to final assembly and testing of the cavity string components and their subsequent cryomodule integration. This paper outlines the verification of the various cryomodule sub-components and details the processes utilised for final cavity string integration. The paper also describes the modifications needed to facilitate this new cryomodule installation and ultimate operation on the ALICE facility at Daresbury Laboratory.

 
TH3GAI03 Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in Background Plasma 3090
 
  • I. Kaganovich, R.C. Davidson, M. Dorf, A.B. Sefkow, E. Startsev
    PPPL, Princeton, New Jersey
  • J.J. Barnard
    LLNL, Livermore, California
  • A. Friedman, E. P. Lee, S.M. Lidia, B.G. Logan, P.K. Roy, P.A. Seidl
    LBNL, Berkeley, California
  • D.R. Welch
    Voss Scientific, Albuquerque, New Mexico
 
 

Funding: Research supported by the US Department of Energy.


Neutralized drift compression offers an effective means for particle beam focusing and current amplification. In neutralized drift compression, a linear radial and longitudinal velocity drift is applied to a beam pulse, so that the beam pulse compresses as it drifts in the focusing section. The beam intensity can increase more than a factor of 100 in both the radial and longitudinal directions, totaling to more than a 10,000 times increase in the beam density during this process. The optimal configuration of focusing elements to mitigate the time-dependent focal plane is discussed in this paper. The self-electric and self-magnetic fields can prevent tight ballistic focusing and have to be neutralized by supplying neutralizing electrons. This paper presents a survey of the present numerical modeling techniques and theoretical understanding of plasma neutralization of intense particle beams. Investigations of intense beam pulse interaction with a background plasma have identified the operating regimes for stable and neutralized propagation of intense charged particle beams.

 

slides icon

Slides

 
FR5PFP008 A Statistical Study of Beam Centroid Oscillations in a Solenoid Transport Channel 4323
 
  • S.M. Lund, J.E. Coleman, S.M. Lidia, P.A. Seidl, C.J. Wootton
    LBNL, Berkeley, California
 
 

Funding: This research was performed under the auspices of the U.S. DOE at the Lawrence Livermore and Lawrence Berkeley National Laboratories under Contracts No. DE-AC52-07NA27344 and No. DE-AC02-05CH11231.


A recent theory in Ref. * analyzes small-amplitude oscillations of the transverse beam centroid (center of mass) in solenoidal transport channels. This theory employs a transformation to a rotating Larmor frame to simply express the centroid response to mechanical misalignments (transverse center displacements and tilts about the of the longitudinal axis of symmetry) of the solenoid and initial centroid errors. The centroid evolution is expressed in terms of a superposition of the centroid evolving in the ideal aligned system plus an expansion in terms of "alignment functions" that are functions of only the ideal lattice with corresponding amplitudes set by the solenoid misalignment parameters. This formulation is applied to analyze statistical properties of beam centroid oscillations induced by solenoid misalignments. Results are compared to experiments at the NDCX experiment at the LBNL. It is found that contributions to oscillation amplitudes from tilts are significantly larger than contributions from offsets for expected parameters. Use of the formulation to optimally steer the centroid back on-axis with limited diagnostic measurements is also discussed.


* S.M. Lund, C.J. Wootton, and E.P. Lee, "Transverse centroid oscillations in solenoidally focused beam transport lattices," accepted for publication, Nuc. Inst. Meth. A.

 
TH3GAI04 Progress in Beam Focusing and Compression for Target Heating and Warm Dense Matter Experiments 3095
 
  • P.A. Seidl, A. Anders, F.M. Bieniosek, J.E. Coleman, J.-Y. Jung, M. Leitner, S.M. Lidia, B.G. Logan, P.N. Ni, D. Ogata, P.K. Roy, W.L. Waldron
    LBNL, Berkeley, California
  • J.J. Barnard, R.H. Cohen, D.P. Grote
    LLNL, Livermore, California
  • M. Dorf, E.P. Gilson
    PPPL, Princeton, New Jersey
  • D.R. Welch
    Voss Scientific, Albuquerque, New Mexico
 
 

The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the warm dense matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlled ramps and forced neutralization. Using an injected 30 mA K+ ion beam with initial kinetic energy 0.3 MeV, axial compression leading to ~100X current amplification and simultaneous radial focusing to a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to NDCX to reach the necessary higher beam intensities, including:

  1. greater axial compression via a longer velocity ramp;
  2. beam steering dipoles to mitigate aberrations in the bunching module;
  3. time-dependent focusing elements to correct considerable chromatic aberrations; and
  4. plasma injection improvements to establish a plasma density always greater than the beam density, expected to be >1013 cm-3.

 

slides icon

Slides