Paper | Title | Page |
---|---|---|
MO3RAC04 | Super-B Project Overview | 38 |
|
||
The SuperB project aims at the construction of an asymmetric (4x7 GeV), very high luminosity, B-Factory on the Roma II (Italy) University campus. The luminosity goal of 1036 cm-2 s-1 can be reached with a new collision scheme with large Piwinski angle and the use of “crab” sextupoles. A crab-waist IR has been successfully tested at the DAPHNE Phi-Factory at LNF-Frascati (Italy) in 2008. The crab waist together with very low beta* will allow for operation with relatively low beam currents and reasonable bunch length, comparable to those of PEP-II and KEKB. In the High Energy Ring, two spin rotators permit bringing longitudinally polarized beams into collision at the IP. The lattice has been designed with a very low intrinsic emittance and is quite compact, less than 2 km long. The tight focusing requires a sophisticated Interaction Region with quadrupoles very close to the IP. A Conceptual Design Report was published in March 2007, and beam dynamics and collective effects R&D studies are in progress in order to publish a Technical Design Report by the end of 2010. A status of the design and simulations is presented in this paper. |
||
|
||
MO6PFP014 | ALBA Storage Ring Quadrupoles and Sextupoles Manufacturing and Measurements | 160 |
|
||
BINP has manufactured and measured 243 multipoles of 9 types for the ALBA storage ring. The magnets had severe requirements on the manufacturing tolerances and the alignment of their magnetic axes. The quadrupole magnets are made of 1mm laminated yokes with the bore diameter of 61mm. The sextupole magnets are made of 0.5mm laminated yokes with the bore diameter of 76mm. Rotating coils and Hall probes have been used for the magnetic measurements. The features of manufacturing and magnetic measurements are presented in this paper. |
||
MO4RAI01 | Experience with DAΦNE Upgrade Including Crab Waist | 80 |
|
||
In 2007 DAΦNE was upgraded to operate in a regime of large Piwinski angle, with a novel IR optics, reduced vertical beta at the interaction point, and additional sextupoles providing for crab waist collisions. The specific luminosity was boosted by more than a factor of four, and the peak luminosity was more than doubled with respect to the maximum value obtained with the original collider configuration. The DAΦNE commissioning as well as the first experience with large Piwinski angle and crab waist collisions scheme will be reported. |
||
|
||
WE3PBI02 | Study of Beam Dynamics during the Crossing of the Third-Order Resonance at VEPP-4M | 1894 |
|
||
The influence of resonances on the beam dynamics in storage rings is of substantial interest to accelerator physics. For example, a fast crossing of resonances occurs in the damping rings of future linear colliders during the beam damping (due to the incoherent shift) can result in a loss of particles. We have studied experimentally the crossing of resonances of different power near the working point of the VEPP-4M storage ring. Observation of the beam sizes and particle losses was performed with a single-turn time resolution. Comparison with the numerical simulation has been made and will be presented alongside the experimental results. |
||
|
||
WE6PFP049 | Crab Waist Collision Scheme: Numerical Simulations versus Experimental Results | 2604 |
|
||
A novel scheme of crab waist collisions has been successfully tested at the electron-positron collider DAΦNE, Italian Phi-factory. In this paper we compare numerical simulations of the crab waist beam-beam interaction with obtained experimental results. For this purpose we perform weak-strong and quasi strong-strong beam-beam simulations using a realistic DAΦNE lattice model that has proven to reproduce reliably both linear and nonlinear collider optics. |
||
WE6PFP105 | Lattice Options for the CLIC Damping Rings | 2757 |
|
||
Optics design optimisation studies have been undertaken for the CLIC damping ring lattice. Main parameters such as the ring energy and output longitudinal emittance were reconsidered in order to reduce the detrimental effect of collective instabilities. In this respect, the low emittance arc cell length was rationalized taking into account space and magnet design requirements. The straight section cell filled with super-conducting wigglers was modified to accommodate a robust absorption scheme. Several low emittance rings were considered and compared with respect to their dynamic aperture and the IBS-dominated output emittances. |
||
TH6PFP092 | Super-B LER Dynamic Aperture Study and Optimization | 3922 |
|
||
A project of the SuperB Factory in Italy with the crab-waist collision scheme and extremely large luminosity addresses new challenges to the nonlinear beam dynamics study. Among these challenges are: low emittance lattice requiring strong sextupoles for chromatic correction, sub-mm vertical betatron function at the IP, crab sextupoles placed at both sides from the IP, etc. In this report we describe the results of the DA limiting sources analysis and optimization of the arrangement of the IR and Crab sextupoles and octupoles for the Low Energy Ring (LER). |
||
TH6PFP093 | Nonlinear Beam Dynamics with Strong Damping and Space Charge in the CLIC Damping Ring | 3925 |
|
||
The beam is injected into the CLIC damping ring with the relatively large emittance and energy spread and then is damped to the extremely low phase volume. During the damping process the betatron frequency of each particle changes due to the space charge tune shift and nonlinear detuning produced by the chromatic sextupoles, wiggler nonlinear field components and by the space charge force. During the damping, the particle cross resonances, which can trap some fraction of the beam, cause the loss of intensity, the beam blow up and degrade the beam quality. In this paper we study the evolution of the beam distribution in time during the damping. |
||
TH6REP029 | Accelerator Physics Activity at the VEPP-4M Collider | 4012 |
|
||
The VEPP-4M electron-positron collider is now operating with the KEDR detector for high-energy physics experiments in the 1.5−2.0 GeV beam energy range. Parallel with these experiments, the VEPP-4M scientific team carries out a number of accelerator physics investigations. A new registration system for the Touschek polarimeter has been put into operation. A new NMR-based system for suppression of the guide field ripples has been developed. The counting rate of the Touschek particles has been measured as a function of the beam energy in the range from 1.85 to 4 GeV. The measurement results can be claimed at the future super B and C-Tau factories. For simultaneous measurement of the transverse beam position and inclination angle an X-ray multi-pinhole camera has been designed, manufactured and installed at the VEPP-4M. To suppress the longitudinal instability caused by high-order modes of the RF cavities, a feedback system has been developed. |