Paper | Title | Page |
---|---|---|
WE6RFP015 | Energy Deposition Studies for Possible Innovative Phase II Collimator Designs | 2811 |
|
||
Due to the known limitations of Phase I LHC collimators in stable physics conditions, the LHC collimation system will be complemented by additional 30 Phase II collimators. The Phase II collimation system is designed to improve cleaning efficiency and to minimize the collimator-induced impedance with the main function of protecting the Super Conducting (SC) magnets from quenching due to beam particle losses. To fulfil these requirements, different possible innovative collimation designs were taken in consideration. Advanced jaw materials, including new composite materials (e.g. Cu–Diamond), jaw SiC insertions, coating foil, in-jaw instrumentation (e.g. BPM) and improved mechanical robustness of the jaw are the main features of these new promising Phase II collimator designs developed at CERN. The FLUKA Monte Carlo code is extensively used to evaluate the behavior of these collimators in the most radioactive areas of LHC, supporting the mechanical integration. These studies aim to identify the possible critical points along the IR7 line. |
||
WE6RFP030 | Recent Progress on the Design of a Rotatable Copper Collimator for the LHC Collimation Upgrade | 2853 |
|
||
Funding: Work supported in part by the U.S. Department of Energy contract DE-AC02-76SF00515 The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite collimators with 30 high Z Phase II collimators. One option is to use metallic rotatable collimators and this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. Design issues include: 1) Collimator jaw deflection due to heating and sagita must be small when operated in the steady state condition, 2) Collimator jaws must withstand transitory periods of high beam impaction with no permanent damage, 3) Jaws must recover from accident scenario where up to 7 full intensity beam pulses impact on the jaw surface and 4) The beam impedance contribution due to the collimators must be small to minimize coherent beam instabilities. The current design will be presented. |